A global analysis of trait variation and evolution in climbing plants

Climbing plants (lianas, vines, scramblers) are under‐represented in many global datasets that underpin knowledge in functional trait biology, important for ecological theory, conservation and predicting forest dynamics under global change. To address this omission, we tested a set of hypotheses about how the traits of climbers vary with latitude and climate and amongst major biogeographical regions of the world using a comprehensive new, global dataset.

[1]  S. Higgins,et al.  TRY – a global database of plant traits , 2011, Global Change Biology.

[2]  Michelle R. Leishman,et al.  Traits and ecological strategies of Australian tropical and temperate climbing plants , 2011 .

[3]  F. Bongers,et al.  Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. , 2011, Ecology letters.

[4]  M. Westoby,et al.  Plant functional traits in Australian subtropical rain forest: partitioning within‐community from cross‐landscape variation , 2010 .

[5]  K. Cao,et al.  Contrasting cost–benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China , 2010, Oecologia.

[6]  Yadvinder Malhi,et al.  Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. , 2009 .

[7]  W. Silk,et al.  Moving with climbing plants from Charles Darwin's time into the 21st century. , 2009, American journal of botany.

[8]  S. Vogel Leaves in the lowest and highest winds: temperature, force and shape. , 2009, The New phytologist.

[9]  Martin Hermy,et al.  The LEDA Traitbase: a database of life‐history traits of the Northwest European flora , 2008 .

[10]  Nathan J B Kraft,et al.  Functional Traits and Niche-Based Tree Community Assembly in an Amazonian Forest , 2008, Science.

[11]  Campbell O. Webb,et al.  Bioinformatics Applications Note Phylocom: Software for the Analysis of Phylogenetic Community Structure and Trait Evolution , 2022 .

[12]  Peter B Reich,et al.  Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. , 2007, Ecological applications : a publication of the Ecological Society of America.

[13]  Campbell O. Webb,et al.  Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. , 2007, Annals of botany.

[14]  S. Wright,et al.  Leaf functional traits of tropical forest plants in relation to growth form , 2007 .

[15]  Peter Poschlod,et al.  BIOPOP — A database of plant traits and internet application for nature conservation , 2003, Folia Geobotanica.

[16]  P. Downey,et al.  The biology of Australian weeds 46. Anredera cordifolia (Ten.) Steenis , 2007 .

[17]  A. Pitman,et al.  Global patterns in seed size , 2006 .

[18]  Mark Westoby,et al.  Land-plant ecology on the basis of functional traits. , 2006, Trends in ecology & evolution.

[19]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[20]  William G. Lee,et al.  Modulation of leaf economic traits and trait relationships by climate , 2005 .

[21]  F. Bongers,et al.  Forest Climbing Plants of West Africa: Diversity, Ecology and Management , 2005 .

[22]  S. Schnitzer A Mechanistic Explanation for Global Patterns of Liana Abundance and Distribution , 2005, The American Naturalist.

[23]  Campbell O. Webb,et al.  A Brief History of Seed Size , 2005, Science.

[24]  E. Gianoli Evolution of a climbing habit promotes diversification in flowering plants , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  C. Tinoco-Ojanguren,et al.  Vine species diversity across environmental gradients in northwestern México , 2004, Biodiversity & Conservation.

[26]  J. P. Grime,et al.  The plant traits that drive ecosystems: Evidence from three continents , 2004 .

[27]  Sean C. Thomas,et al.  The worldwide leaf economics spectrum , 2004, Nature.

[28]  Daniel S. Falster,et al.  Leaf size and angle vary widely across species: what consequences for light interception? , 2003, The New phytologist.

[29]  M. Maestro,et al.  Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? , 2003 .

[30]  Campbell O. Webb,et al.  Phylogenies and Community Ecology , 2002 .

[31]  T. Garland,et al.  Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods , 2002 .

[32]  Yadvinder Malhi,et al.  Increasing dominance of large lianas in Amazonian forests , 2002, Nature.

[33]  Frans Bongers,et al.  The ecology of lianas and their role in forests , 2002 .

[34]  A. Prinzing The niche of higher plants: evidence for phylogenetic conservatism , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  Mark W. Chase,et al.  Evolution of the angiosperms: calibrating the family tree , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[36]  P. Reich,et al.  Strategy shifts in leaf physiology, structure and nutrient content between species of high‐ and low‐rainfall and high‐ and low‐nutrient habitats , 2001 .

[37]  S. Goodacre,et al.  Molecular evolutionary relationships between partulid land snails of the Pacific , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  R. Blaustein Kudzu's invasion into Southern United states life and culture , 2001 .

[39]  Jacob McC. Overton,et al.  Shifts in trait‐combinations along rainfall and phosphorus gradients , 2000 .

[40]  M. Westoby,et al.  Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? , 2000 .

[41]  Stefan A. Schnitzer,et al.  Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest , 2000, Journal of Tropical Ecology.

[42]  M. Westoby,et al.  The Evolutionary ecology of seed size , 2000 .

[43]  Mark Westoby,et al.  EVOLUTIONARY DIVERGENCES IN LEAF STRUCTURE AND CHEMISTRY, COMPARING RAINFALL AND SOIL NUTRIENT GRADIENTS , 1999 .

[44]  F. Putz,et al.  Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia , 1999 .

[45]  P. Ashton The tropical rain forest (2nd edn) , 1997 .

[46]  M. Westoby,et al.  Larger seeds in tropical floras: consistent patterns independent of growth form and dispersal mode , 1997 .

[47]  Panetta,et al.  The Biology Of Australian Weeds , 1995 .

[48]  M. Fenner Seeds: The Ecology of Regeneration in Plant Communities , 1992 .

[49]  T. Garland,et al.  Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .

[50]  Jennifer H. Richards,et al.  The Biology of Vines : Heteroblastic development in vines , 1992 .

[51]  Harold A. Mooney,et al.  Biology of vines , 1989 .

[52]  C. Dickman Body Size, Prey Size, and Community Structure in Insectivorous Mammals , 1988 .

[53]  M. Jacobs The Tropical Rain Forest , 1988, Springer Berlin Heidelberg.

[54]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[55]  F. Putz Liana biomass and leaf area of a «Tierra Firme» forest in the Rio Negro Basin, Venezuela , 1983 .

[56]  L. Webb Environmental Relationships of the Structural Types of Australian Rain Forest Vegetation , 1968 .

[57]  BY D. F. PARKHURSTt OPTIMAL LEAF SIZE IN RELATION TO ENVIRONMENT * , 2022 .