IRI the International Standard for the Ionosphere

Abstract. This paper gives a brief overview over the International Reference Ionosphere (IRI) project and model. IRI is recognized as the official standard for the ionosphere by the International Standardization Organization (ISO), the International Union of Radio Science (URSI), the Committee on Space Research (COSPAR), and the European Cooperation for Space Standardization (ECCS). Of great importance are the external drivers of the model that help IRI to represent ionospheric conditions as realistically as possible. The paper discusses the drivers currently used presents recent improvements and changes. Besides the standard solar, magnetic, and ionospheric indices the paper also reports on the adjustment of the model with data and equivalent indices and on the progress towards a Real-Time IRI using data assimilation. IRI has been widely validated with many different data sources and has fared very well in community wide assessment studies. We present some of these studies and document the wide usages of the model in the scientific literature. Finally, we present an outlook on things to come in IRI-2018 and thereafter.

[1]  A. D. Danilov,et al.  Improving the 75 to 300 km ion composition model of the IRI , 1995 .

[2]  Sandro M. Radicella,et al.  A new version of the NeQuick ionosphere electron density model , 2008 .

[3]  Larry J. Paxton,et al.  Near real-time assimilation in IRI of auroral peak E-region density and equatorward boundary , 2010 .

[4]  V. Shubin,et al.  Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations , 2015 .

[5]  Vladimir Truhlik,et al.  The International Reference Ionosphere 2012 – a model of international collaboration , 2014 .

[6]  Bodo W. Reinisch,et al.  Assimilation of GIRO data into a real‐time IRI , 2012 .

[7]  Sandro M. Radicella,et al.  Data ingestion into NeQuick 2 , 2011 .

[8]  D. Bilitza,et al.  Ionosonde-based indices for improved representation of solar cycle variation in the International Reference Ionosphere model , 2017, Journal of Atmospheric and Solar-Terrestrial Physics.

[9]  K. Torkar,et al.  FIRI: A semiempirical model of the lower ionosphere , 2001 .

[10]  Mihail Codrescu,et al.  An empirical ionospheric storm-time correction model , 2000 .

[11]  D. Bilitza,et al.  A new global empirical model of the electron temperature with the inclusion of the solar activity variations for IRI , 2012, Earth, Planets and Space.

[12]  S. S. Kouris,et al.  Diurnal variation in the E-layer ionization , 1973 .

[13]  Edward W. Cliver,et al.  Revisiting the Sunspot Number , 2014, 1407.3231.

[14]  D. Bilitza,et al.  Ion density calculator (IDC): A new efficient model of ionospheric ion densities , 2010 .

[15]  S. Radicella,et al.  On the prediction of F1 ledge occurrence and critical frequency , 1997 .

[16]  D. Bilitza,et al.  A different method to update monthly median hmF2 values , 2013 .

[17]  Dieter Bilitza,et al.  International reference ionosphere: Recent developments , 1986 .

[18]  D. Themens,et al.  Solar activity variability in the IRI at high latitudes: Comparisons with GPS total electron content , 2016 .

[19]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[20]  Dieter Bilitza,et al.  Goals and status of the International Reference Ionosphere , 1978 .

[21]  Mark Hausman,et al.  Real‐time reconstruction of the three‐dimensional ionosphere using data from a network of GPS receivers , 2006 .

[22]  R. Y. Liu,et al.  A new solar index which leads to improved foF2 predictions using the CCIR Atlas. , 1983 .

[23]  J. Souza,et al.  Equatorial spread F statistics and empirical representation for IRI: A regional model for the Brazilian longitude sector , 2003 .

[24]  Ludger Scherliess,et al.  Radar and satellite global equatorial F-region vertical drift model , 1999 .

[25]  U. Hugentobler,et al.  Regional modeling of ionospheric peak parameters using GNSS data—An update for IRI ☆ , 2015 .

[26]  A. D. Danilov,et al.  Problems with incorporating a new D-region model into the IRI , 1995 .

[27]  T. Gulyaeva,et al.  Modification of the solar activity indices in the International Reference Ionosphere IRI and IRI-Plas models due to recent revision of sunspot number time series , 2016 .

[28]  S. Magdaleno,et al.  Global empirical models of the density peak height and of the equivalent scale height for quiet conditions , 2013 .

[29]  D. Bilitza,et al.  Measurements and IRI model predictions during the recent solar minimum , 2011, 2011 XXXth URSI General Assembly and Scientific Symposium.

[30]  D. Altadill,et al.  Midlatitude F region peak height changes in response to interplanetary magnetic field conditions and modeling results , 2012 .

[31]  Roger M. Gallet,et al.  Representation of diurnal and geographic variations of ionospheric data by numerical methods , 1962 .

[32]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2016: From ionospheric climate to real‐time weather predictions , 2017 .

[33]  Matthew Angling,et al.  Development of an HF selection tool based on the Electron Density Assimilative Model near‐real‐time ionosphere , 2009 .

[34]  Dieter Bilitza,et al.  International reference ionosphere—Status 1995/96 , 1997 .

[35]  Xiaoqing Pi,et al.  CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: Electron density, neutral density, NmF2, and hmF2 using space based observations , 2012 .

[36]  D. Bilitza,et al.  New B0 and B1 models for IRI , 2000 .

[37]  J. M. Torta,et al.  Proposal of new models of the bottom-side B0 and B1 parameters for IRI , 2009 .

[38]  V. Shubin,et al.  Global model of the F2 layer peak height for low solar activity based on GPS radio-occultation data , 2013 .

[39]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2000 , 2001 .

[40]  C. K. Shum,et al.  Regional 4-D modeling of the ionospheric electron density , 2008 .

[41]  D. Bilitza Electron density in the equatorial topside , 1985 .

[42]  Sandro M. Radicella,et al.  GNSS derived TEC data ingestion into IRI 2012 , 2015 .

[43]  J. Russell,et al.  Empirical STORM-E model: I. Theoretical and observational basis , 2013 .

[44]  V. Truhlík,et al.  An empirical model of ion composition in the outer ionosphere , 2003 .

[45]  A. D. Danilov,et al.  A new model of the ion composition at 75 to 1000 km for IRI , 1985 .

[46]  John Bosco Habarulema,et al.  Adapting a climatology model to improve estimation of ionosphere parameters and subsequent validation with radio occultation and ionosonde data , 2017 .

[47]  Dieter Bilitza,et al.  International reference ionosphere , 1978 .

[48]  L. Petrie,et al.  A method for predicting the F1 layer critical frequency based on the Zurich smoothed sunspot number , 1973 .

[49]  Richard B. Langley,et al.  Ingesting GPS-derived TEC data into the International Reference Ionosphere for single frequency radar altimeter ionospheric delay corrections , 1998 .

[50]  Xiaoqing Pi,et al.  CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: NmF2, hmF2, and vertical drift using ground‐based observations , 2011 .

[51]  H. Lühr,et al.  IRI‐2007 model overestimates electron density during the 23/24 solar minimum , 2010 .

[52]  D. Bilitza,et al.  International Reference Ionosphere 2007: Improvements and new parameters , 2008 .

[53]  D. Bilitza,et al.  A global model for the height of the F2-peak using M3000 values from the CCIR numerical map , 1979 .

[54]  D. Bilitza,et al.  Improved IRI Predictions for the GEOSAT Time Period , 1997 .

[55]  J. Russell,et al.  Empirical STORM-E model: II. Geomagnetic corrections to nighttime ionospheric E-region electron densities , 2013 .

[56]  Jaume Sanz,et al.  Combining GPS measurements and IRI model values for space weather specification , 2002 .

[57]  Dieter Bilitza,et al.  An empirical model of L-band scintillation S4 index constructed by using FORMOSAT-3/COSMIC data , 2017 .

[58]  A. Mannucci,et al.  CEDAR‐GEM Challenge for Systematic Assessment of Ionosphere/Thermosphere Models in Predicting TEC During the 2006 December Storm Event , 2017 .

[59]  Xinan Yue,et al.  Global 3‐D ionospheric electron density reanalysis based on multisource data assimilation , 2012 .