Asymptotics of bivariate generating functions with algebraic singularities

ASYMPTOTICS OF BIVARIATE GENERATING FUNCTIONS WITH ALGEBRAIC SINGULARITIES Torin Greenwood Robin Pemantle Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of univariate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate analytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quantum walks. Bressler and Pemantle (2007) found a (d+ 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Gröbner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size √ n near the peaks, each amplitude is asymptotic to an Airy function.

[1]  Robin Pemantle,et al.  Quantum random walks in one dimension via generating functions , 2007 .

[2]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[3]  Bernard Mourrain,et al.  Explicit factors of some iterated resultants and discriminants , 2006, Math. Comput..

[4]  R. Kenyon,et al.  Limit shapes and the complex Burgers equation , 2005, math-ph/0507007.

[5]  Zhicheng Gao,et al.  Central and local limit theorems applied to asymptotic enumeration IV: multivariate generating functions , 1992 .

[6]  Etsuo Segawa,et al.  One-dimensional three-state quantum walk. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Yuliy Baryshnikov,et al.  Asymptotics of multivariate sequences, part III: Quadratic points , 2008 .

[8]  Timothy DeVries Algorithms for Bivariate Singularity Analysis , 2011 .

[9]  Barry C. Sanders,et al.  Quantum walks in higher dimensions , 2002 .

[10]  Mark C. Wilson,et al.  Asymptotics of Multivariate Sequences II: Multiple Points of the Singular Variety , 2004, Combinatorics, Probability and Computing.

[11]  Joris van der Hoeven,et al.  Automatic asymptotics for coefficients of smooth, bivariate rational functions , 2011 .

[12]  Vivien M. Kendon,et al.  Decoherence in quantum walks – a review , 2006, Mathematical Structures in Computer Science.

[13]  R. Pemantle,et al.  Asymptotics of Multivariate Sequences, part I. Smooth points of the singular variety , 2000 .

[14]  Robin Pemantle,et al.  Quantum random walk on the integer lattice: examples and phenomena , 2009, 0903.2967.

[15]  K. Shadan,et al.  Available online: , 2012 .

[16]  Norio Konno,et al.  Localization of two-dimensional quantum walks , 2004 .

[17]  Mark C. Wilson,et al.  Analytic Combinatorics in Several Variables , 2013 .

[18]  Salvador Elías Venegas-Andraca,et al.  Quantum Walks for Computer Scientists , 2008, Quantum Walks for Computer Scientists.

[19]  Hsien-Kuei Hwang,et al.  Large deviations for combinatorial distributions. I. Central limit theorems , 1996 .

[20]  Andris Ambainis,et al.  Quantum walks driven by many coins , 2002, quant-ph/0210161.

[21]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[22]  Yuliy Baryshnikov,et al.  Two-dimensional Quantum Random Walk , 2008, Journal of Statistical Physics.

[23]  Mourad E. H. Ismail,et al.  Three routes to the exact asymptotics for the one-dimensional quantum walk , 2003, quant-ph/0303105.

[24]  Hsien-Kuei Hwang,et al.  LARGE DEVIATIONS OF COMBINATORIAL DISTRIBUTIONS II. LOCAL LIMIT THEOREMS , 1998 .

[25]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration II: Multivariate Generating Functions , 1983, J. Comb. Theory, Ser. A.

[26]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[27]  A. D. Osborne,et al.  The generation of all rational orthogonal matrices , 1991 .

[28]  Marina Weber,et al.  Using Algebraic Geometry , 2016 .

[29]  Timothy DeVries A case study in bivariate singularity analysis , 2010 .

[30]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[31]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[32]  M. Goresky,et al.  Stratified Morse theory , 1988 .