Single Crystal Flexible Electronics Enabled by 3D Spalling
暂无分享,去创建一个
Ning Li | Shu-Jen Han | Huan Hu | Devendra Sadana | Shu-jen Han | D. Sadana | S. Bedell | Ning Li | X. H. Liu | K. Saenger | Huan Hu | Stephen Bedell | Xiao Hu Liu | Katherine Saenger | Shu-Jen Han
[1] E. Yablonovitch,et al. Extreme selectivity in the lift‐off of epitaxial GaAs films , 1987 .
[2] Can Bayram,et al. Vertical Light-Emitting Diode Fabrication by Controlled Spalling , 2013 .
[3] Christopher S. Chen,et al. High‐Conductivity Elastomeric Electronics , 2004 .
[4] J. Rogers,et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies , 2010, Nature.
[5] Zhenan Bao,et al. Organic single-crystal field-effect transistors , 2007 .
[6] Yonggang Huang,et al. Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.
[7] Placid Mathew Ferreira,et al. Printable Single‐Crystal Silicon Micro/Nanoscale Ribbons, Platelets and Bars Generated from Bulk Wafers , 2007 .
[8] J. Rogers,et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. , 2011, Nature materials.
[9] Charles M Lieber,et al. Large-area blown bubble films of aligned nanowires and carbon nanotubes. , 2007, Nature nanotechnology.
[10] Davood Shahrjerdi,et al. Ultralight High‐Efficiency Flexible InGaP/(In)GaAs Tandem Solar Cells on Plastic , 2013 .
[11] Stephen R. Forrest,et al. The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.
[12] Zhigang Suo,et al. Steady-state cracking in brittle substrates beneath adherent films , 1989 .
[13] John A. Rogers,et al. Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers , 2006 .
[14] Sigurd Wagner,et al. Highly stable amorphous-silicon thin-film transistors on clear plastic , 2008 .
[15] Dae-Hyeong Kim,et al. Flexible and stretchable electronics for biointegrated devices. , 2012, Annual review of biomedical engineering.
[16] Hee‐eun Song,et al. Sub-5 μm-thick spalled single crystal Si foils by decoupling crack initiation and propagation , 2016 .
[17] G. Gelinck,et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.
[18] Yozo Kanda,et al. Piezoresistance effect of silicon , 1991 .
[19] E. Wang,et al. Super-elastic graphene ripples for flexible strain sensors. , 2011, ACS nano.
[20] Benjamin C. K. Tee,et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.
[21] Allister F. McGuire,et al. A skin-inspired organic digital mechanoreceptor , 2015, Science.
[22] C. Packard,et al. Controlled exfoliation of (100) GaAs-based devices by spalling fracture , 2016 .
[23] D. Cho,et al. The surface/bulk micromachining (SBM) process: a new method for fabricating released MEMS in single crystal silicon , 1999 .
[24] Davood Shahrjerdi,et al. High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology , 2012 .
[25] Kwang S. Kim,et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.
[26] Heung Cho Ko,et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.
[27] Sam Emaminejad,et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis , 2016, Nature.
[28] H. Ohta,et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.
[29] J. Rogers,et al. A printable form of silicon for high performance thin film transistors on plastic substrates , 2004 .
[30] Z. Suo,et al. Split singularities: stress field near the edge of a silicon die on a polymer substrate , 1998 .
[31] T. Someya,et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. , 2009, Nature materials.