Orthographic Stereo Correlator on the Terrain Model for Apollo Metric Images

A stereo correlation method on the object domain is proposed to generate the accurate and dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce high-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. Given camera parameters of an image pair from bundle adjustment in ASP, a correlation window is defined on the terrain with the predefined surface normal of a post rather than image domain. The squared error of back-projected images on the local terrain is minimized with respect to the post elevation. This single dimensional optimization is solved efficiently and improves the accuracy of the elevation estimate.

[1]  Mark Nall,et al.  The Lunar Mapping and Modeling Project , 2009 .

[2]  Michael Broxton,et al.  A bayesian formulation for sub-pixel refinement in stereo orbital imagery , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[3]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[4]  J. Veverka,et al.  Voyager photometry of Rhea, Dione, Tethys, Enceladus and Mimas , 1984 .

[5]  Christian Heipke,et al.  Toward surface reconstruction using multi-image shape from shading , 1994, Other Conferences.

[6]  Richard Szeliski,et al.  Vision Algorithms: Theory and Practice , 2002, Lecture Notes in Computer Science.

[7]  Michael Broxton,et al.  3D Lunar Terrain Reconstruction from Apollo Images , 2009, ISVC.

[8]  Mubarak Shah,et al.  Integration of shape from shading and stereo , 1995, Pattern Recognit..

[9]  Gérard G. Medioni,et al.  Dense multiple view stereo with general camera placement using tensor voting , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[10]  Clay M. Thompson,et al.  Robust Photo-topography by Fusing Shape-from-Shading and Stereo , 1993 .

[11]  Changming Sun,et al.  Fast Stereo Matching Using Rectangular Subregioning and 3D Maximum-Surface Techniques , 2002, International Journal of Computer Vision.

[12]  M. Minnaert Photometry of the Moon , 1961 .

[13]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[14]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[15]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[16]  Christian Menard,et al.  Robust Stereo and Adaptive Matching in Correlation Scale-Space , 1997 .

[17]  M. Broxton,et al.  Ames Stereo Pipeline, NASA's Open Source Automated Stereogrammetry Software , 2010 .

[18]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[19]  Augusto Sarti,et al.  3D area matching with arbitrary multiview geometry , 1998, Signal Process. Image Commun..

[20]  Ara V. Nefian,et al.  Robust Mosaicking of Stereo Digital Elevation Models from the Ames Stereo Pipeline , 2010, ISVC.

[21]  Walter G. Kropatsch,et al.  Adaptive Stereo Matching in Correlation Scale-Space , 1997, ICIAP.