A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving

[1]  Ayalew H. Assen,et al.  Isoreticular rare earth fcu-MOFs for the selective removal of H2S from CO2 containing gases , 2017 .

[2]  Ayalew H. Assen,et al.  Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. , 2017, Chemical Society reviews.

[3]  M. Eddaoudi,et al.  Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration , 2017, Science.

[4]  Amy J. Cairns,et al.  Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H2S , 2017 .

[5]  Tony Pham,et al.  Benchmark C2H2/CO2 and CO2/C2H2 Separation by Two Closely Related Hybrid Ultramicroporous Materials , 2016 .

[6]  B. Li,et al.  Porous Metal-Organic Frameworks: Promising Materials for Methane Storage , 2016 .

[7]  M. Eddaoudi,et al.  A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO2 Removal and Air Capture Using Physisorption. , 2016, Journal of the American Chemical Society.

[8]  M. Eddaoudi,et al.  A metal-organic framework–based splitter for separating propylene from propane , 2016, Science.

[9]  Y. Chabal,et al.  Understanding and controlling water stability of MOF-74 , 2016, 1604.00337.

[10]  C. Serre,et al.  MIL-91(Ti), a small pore metal–organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport , 2016 .

[11]  M. Zaworotko,et al.  Direct Air Capture of CO2 by Physisorbent Materials. , 2015, Angewandte Chemie.

[12]  Ayalew H. Assen,et al.  Ultra-Tuning of the Rare-Earth fcu-MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins. , 2015, Angewandte Chemie.

[13]  P. Llewellyn,et al.  Highly Selective CO2 Capture by Small Pore Scandium-Based Metal–Organic Frameworks , 2015 .

[14]  A. Emwas,et al.  MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage , 2015, Journal of the American Chemical Society.

[15]  Amy J. Cairns,et al.  A facile solvent-free synthesis route for the assembly of a highly CO2 selective and H2S tolerant NiSIFSIX metal-organic framework. , 2015, Chemical communications.

[16]  F. Kapteijn,et al.  Design of Hydrophilic Metal Organic Framework Water Adsorbents for Heat Reallocation , 2015, Advanced materials.

[17]  D. Vos,et al.  Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity. , 2015, Chemical communications.

[18]  D. Farrusseng,et al.  Enantiopure Peptide-Functionalized Metal-Organic Frameworks. , 2015, Journal of the American Chemical Society.

[19]  Alírio E. Rodrigues,et al.  Syngas Purification by Porous Amino-Functionalized Titanium Terephthalate MIL-125 , 2015 .

[20]  Amy J. Cairns,et al.  Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. , 2015, Journal of the American Chemical Society.

[21]  Jeffrey A. Reimer,et al.  Cooperative insertion of CO2 in diamine-appended metal-organic frameworks , 2015, Nature.

[22]  Nicolaas A. Vermeulen,et al.  A hafnium-based metal-organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. , 2014, Journal of the American Chemical Society.

[23]  G. Qian,et al.  Methane storage in metal-organic frameworks. , 2014, Chemical Society reviews.

[24]  Mohamed Eddaoudi,et al.  A supermolecular building approach for the design and construction of metal-organic frameworks. , 2014, Chemical Society reviews.

[25]  S. Kaskel,et al.  Flexible metal-organic frameworks. , 2014, Chemical Society reviews.

[26]  Christian Serre,et al.  High valence 3p and transition metal based MOFs. , 2014, Chemical Society reviews.

[27]  Amy J. Cairns,et al.  Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks , 2014, Nature Chemistry.

[28]  Amy J. Cairns,et al.  Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture , 2014, Nature Communications.

[29]  Diego A. Gómez-Gualdrón,et al.  Exploring the Limits of Methane Storage and Delivery in Nanoporous Materials , 2014 .

[30]  H. Furukawa,et al.  High Methane Storage Capacity in Aluminum Metal–Organic Frameworks , 2014, Journal of the American Chemical Society.

[31]  Diego A. Gómez-Gualdrón,et al.  Isoreticular series of (3,24)-connected metal-organic frameworks: Facile synthesis and high methane uptake properties , 2014 .

[32]  S. Kitagawa,et al.  Does functionalisation enhance CO2 uptake in interpenetrated MOFs? An examination of the IRMOF-9 series. , 2014, Chemical communications.

[33]  Jeffrey R. Long,et al.  Evaluating metal–organic frameworks for natural gas storage , 2014 .

[34]  Tony Pham,et al.  Pillar substitution modulates CO2 affinity in "mmo" topology networks. , 2013, Chemical communications.

[35]  S. Kaskel,et al.  Highly hydrophobic isoreticular porous metal-organic frameworks for the capture of harmful volatile organic compounds. , 2013, Angewandte Chemie.

[36]  J. Hupp,et al.  Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. , 2013, Journal of the American Chemical Society.

[37]  Amy J. Cairns,et al.  Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. , 2013, Journal of the American Chemical Society.

[38]  B. Smit,et al.  The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework. , 2013, Journal of the American Chemical Society.

[39]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[40]  Perla B. Balbuena,et al.  Porous materials with pre-designed single-molecule traps for CO2 selective adsorption , 2013, Nature Communications.

[41]  S. Krause,et al.  A highly porous metal-organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. , 2012, Chemical communications.

[42]  Myoung Soo Lah,et al.  Post-Synthetic Modifications of Framework Metal Ions in Isostructural Metal–Organic Frameworks: Core–Shell Heterostructures via Selective Transmetalations , 2012 .

[43]  R. Krishna,et al.  Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions , 2012, Nature Communications.

[44]  Yue‐Biao Zhang,et al.  Metal azolate frameworks: from crystal engineering to functional materials. , 2012, Chemical reviews.

[45]  Jingui Duan,et al.  Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups. , 2011, Journal of the American Chemical Society.

[46]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[47]  A. Celzard,et al.  Preparing a Suitable Material Designed for Methane Storage: A Comprehensive Report , 2005 .

[48]  Dolores Lozano-Castelló,et al.  Advances in the study of methane storage in porous carbonaceous materials , 2002 .

[49]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[50]  Ali A. Al-Mubarak,et al.  Dehydration of natural gas using solid desiccants , 2001 .

[51]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[52]  M. J. Pearson Alumina Catalysts in Low-Temperature Claus Process , 1977 .