First order hermite interpolation with spherical Pythagorean-hodograph curves

The general stereographic projection which maps a point on a sphere with arbitrary radius to a point on a plane stereographically and its inverse projection have the Pythagorean-hodograph (PH) preserving property in the sense that they map a PH curve to another PH curve. Upon this fact, for given spatialC1 Hermite data, we construct a spatial PH curve on a sphere that is aC1 Hermite interpolant of the given data as follows: First, we solveC1 Hermite interpolation problem for the stereographically projected planar data of the given data in ℝ3 with planar PH curves expressed in the complex representation. Second, we construct spherical PH curves which are interpolants for the given data in ℝ3 using the inverse general stereographic projection.

[1]  Kenji Ueda,et al.  Deformation of plane curves preserving Pythagorean hodographs , 1997, Proceedings. 1997 IEEE Conference on Information Visualization (Cat. No.97TB100165).

[2]  J. Hoschek Offset curves in the plane , 1985 .

[3]  Gwang-Il Kim,et al.  C1 Hermite interpolation using MPH quartic , 2003, Comput. Aided Geom. Des..

[4]  Kenji Ueda,et al.  Spherical Pythagorean-hodograph curves , 1998 .

[5]  Helmut Pottmann,et al.  Rational curves and surfaces with rational offsets , 1995, Comput. Aided Geom. Des..

[6]  Rida T. Farouki,et al.  Analytic properties of plane offset curves , 1990, Comput. Aided Geom. Des..

[7]  Dereck S. Meek,et al.  A Pythagorean hodograph quintic spiral , 1996, Comput. Aided Des..

[8]  Carla Manni,et al.  Characterization and construction of helical polynomial space curves , 2004 .

[9]  Rida T. Farouki,et al.  The conformal map z -> z2 of the hodograph plane , 1994, Comput. Aided Geom. Des..

[10]  Chung-Nim Lee,et al.  Geometry of root-related parameters of PH curves , 2003, Appl. Math. Lett..

[11]  Rida T. Farouki,et al.  The elastic bending energy of Pythagorean-hodograph curves , 1996, Comput. Aided Geom. Des..

[12]  Rida T. Farouki,et al.  Hermite Interpolation by Rotation-Invariant Spatial Pythagorean-Hodograph Curves , 2002, Adv. Comput. Math..

[13]  Rida T. Farouki,et al.  Structural invariance of spatial Pythagorean hodographs , 2002, Comput. Aided Geom. Des..

[14]  R.T. Farouki,et al.  The approximation of non-degenerate offset surfaces , 1986, Comput. Aided Geom. Des..

[15]  C. A. Neff,et al.  Hermite interpolation by Pythagorean hodograph quintics , 1995 .

[16]  Rida T. Farouki,et al.  Exact offset procedures for simple solids , 1985, Comput. Aided Geom. Des..

[17]  B. Pham Offset approximation of uniform B-splines , 1988 .

[18]  Hyeong In Choi,et al.  Euler-Rodrigues frames on spatial Pythagorean-hodograph curves , 2002, Comput. Aided Geom. Des..

[19]  Rida T. Farouki,et al.  Pythagorean-hodograph quintic transition curves of monotone curvature , 1997, Comput. Aided Des..

[20]  Rida T. Farouki,et al.  Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph curves , 2003, Comput. Aided Geom. Des..

[21]  Rida T. Farouki,et al.  Algebraic properties of plane offset curves , 1990, Comput. Aided Geom. Des..

[22]  T. Sakkalis,et al.  Pythagorean hodographs , 1990 .

[23]  Kyeong Hah Roh,et al.  Medial axis transform and offset curves by Minkowski Pythagorean hodograph curves , 1999, Comput. Aided Des..

[24]  Hwan Pyo Moon Minkowski Pythagorean hodographs , 1999, Comput. Aided Geom. Des..