Continuous-Time Linear Parameter-Varying Identification of a Cross Flow Heat Exchanger: A Local Approach

In this paper, the problem of deriving a dynamical model of a cross flow heat exchanger is considered. In order to take into account the dependency of the system's dynamics on the hot and the cold mass flow rates in an explicit way, an input-output linear parameter-varying (LPV) model is used. A local approach composed of three steps is carried out to identify this LPV model. A parameter estimation scheme is introduced in which cost functions are minimized by using specific nonlinear programming methods. In this study, a finite volume physical model simulator is exploited to simulate and to generate the data. Simulations are performed to demonstrate the benefits of the suggested approach.

[1]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[2]  P.M.J. Van den Hof,et al.  Modeling and Identification of Linear Parameter-Varying Systems, an Orthonormal Basis Function Approach , 2004 .

[3]  H. Kou,et al.  Thermal performance of crossflow heat exchanger with nonuniform inlet temperatures , 1997 .

[4]  Jan Swevers,et al.  Interpolating model identification for SISO linear parameter-varying systems , 2009 .

[5]  P. Heuberger,et al.  Discrete time LPV I/O and state space representations, differences of behavior and pitfalls of interpolation , 2007, 2007 European Control Conference (ECC).

[6]  T. Chinyoka Modeling of cross-flow heat exchangers with viscoelastic fluids , 2009 .

[7]  Elie Tohme Initialization of output error identification algorithms , 2008 .

[8]  Gudmundur Jonsson Parameter Estimation in Models of Heat Exchangers and Geothermal Reservoirs , 1990 .

[9]  Jan Swevers,et al.  Identification of Interpolating Affine LPV Models for Mechatronic Systems with one Varying Parameter , 2008, Eur. J. Control.

[10]  Sylvain Lalot On-line detection of fouling in a water circulating temperature controller (WCTC) used in injection moulding: Part 2: Application , 2006 .

[11]  Okko H. Bosgra,et al.  LPV control for a wafer stage: beyond the theoretical solution , 2005 .

[12]  Bassam Bamieh,et al.  Identification of linear parameter varying models , 2002 .

[13]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[14]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[15]  Michel Verhaegen,et al.  Subspace identification of multivariable linear parameter-varying systems , 2002, Autom..

[16]  Lawton H. Lee,et al.  Identification of Linear Parameter-Varying Systems Using Nonlinear Programming , 1999 .

[17]  Tyrone L. Vincent,et al.  Nonparametric methods for the identification of linear parameter varying systems , 2008, 2008 IEEE International Conference on Computer-Aided Control Systems.

[18]  Michael K. Jensen,et al.  Analytic model for transient heat exchanger response , 2003 .

[19]  R. Ravikanth,et al.  Identification of linear parametrically varying systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[20]  R. van de Molengraft,et al.  Experimental modelling and LPV control of a motion system , 2003, Proceedings of the 2003 American Control Conference, 2003..

[21]  Vincent Verdult,et al.  Kernel methods for subspace identification of multivariable LPV and bilinear systems , 2005, Autom..

[22]  M. Lovera,et al.  Identification for gain-scheduling: a balanced subspace approach , 2007, 2007 American Control Conference.

[23]  Joannes J. Westerink,et al.  Consistent higher degree Petrov–Galerkin methods for the solution of the transient convection–diffusion equation , 1989 .

[24]  M Maarten Steinbuch,et al.  Analytical and experimental modelling for gain-scheduling of a double scara robot , 2004 .

[25]  Michael Athans,et al.  Analysis of gain scheduled control for nonlinear plants , 1990 .

[26]  Michel Verhaegen,et al.  Subspace identification of Bilinear and LPV systems for open- and closed-loop data , 2009, Autom..

[27]  R. Th Modeling and identification of linear parameter-varying systems: an orthonormal basis function Approach , 2008 .

[28]  S. Lalot,et al.  Use of extended Kalman filtering in detecting fouling in heat exchangers , 2007 .

[29]  R. Payne,et al.  Artificial neural network modelling of the thermal performance of a compact heat exchanger , 2009 .

[30]  B. P. Leonard,et al.  A stable and accurate convective modelling procedure based on quadratic upstream interpolation , 1990 .

[31]  N. Pappa,et al.  Real-Time Implementation of Model Predictive Neural Controller for Heat Exchanger , 2005, Control. Intell. Syst..

[32]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[33]  J. Lienhard A heat transfer textbook , 1981 .

[34]  Ashley F. Emery,et al.  Estimating Parameters and Refining Thermal Models by Using the Extended Kalman Filter Approach , 2004 .

[35]  O. Guðmundsson Detection of fouling in heat exchangers , 2008 .

[36]  Y. P. Banjare,et al.  CFD simulation of a Gifford–McMahon type pulse tube refrigerator , 2009 .

[37]  B. P. Leonard,et al.  The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection , 1991 .

[38]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[39]  Roland Tóth,et al.  Asymptotically optimal orthonormal basis functions for LPV system identification , 2009, Autom..

[40]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[41]  Mann Cho,et al.  A comparison of higher-order bounded convection schemes , 1995 .

[42]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[43]  Sylvain Lalot,et al.  Detection of fouling in a cross-flow heat exchanger using a neural network based technique , 2010 .

[44]  I. D. Landau,et al.  A survey of model reference adaptive techniques - Theory and applications , 1973, Autom..

[45]  Ercília Sousa High-order methods and numerical boundary conditions , 2007 .