Analysis of nonlinear vibration of magneto-electro-elastic plate on elastic foundation based on high-order shear deformation

[1]  Chao Ma,et al.  Semi-analytical analysis of static and dynamic responses for laminated magneto-electro-elastic plates , 2019, Composite Structures.

[2]  A. Shooshtari,et al.  Nonlinear Vibration Analysis of Laminated Magneto-Electro-Elastic Rectangular Plate Based on Third-Order Shear Deformation Theory , 2019 .

[3]  F. Ebrahimi,et al.  Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory , 2019, Composite Structures.

[4]  L. Azrar,et al.  Dynamic analysis of multilayered magnetoelectroelastic plates based on a pseudo-Stroh formalism and Lagrange polynomials , 2019, Journal of Intelligent Material Systems and Structures.

[5]  M. Vinyas,et al.  A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods , 2019, Composites Part B: Engineering.

[6]  Xiaolin Li,et al.  Coupling magneto-electro-elastic cell-based smoothed radial point interpolation method for static and dynamic characterization of MEE structures , 2019, Acta Mechanica.

[7]  M. Vinyas,et al.  Finite element evaluation of free vibration characteristics of magneto-electro-elastic rectangular plates in hygrothermal environment using higher-order shear deformation theory , 2018, Composite Structures.

[8]  M. Mofidi,et al.  Nanoscale mass nanosensor based on the vibration analysis of embedded magneto-electro-elastic nanoplate made of FGMs via nonlocal Mindlin plate theory , 2018 .

[9]  L. Azrar,et al.  Dynamic and static behaviors of multilayered angle-ply magnetoelectroelastic laminates with viscoelastic interfaces , 2018 .

[10]  M. Barati,et al.  A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in two-parameter elastic foundation , 2017 .

[11]  A. Jamalpoor,et al.  Nano-scale mass sensor based on the vibration analysis of a magneto-electro-elastic nanoplate resting on a visco-Pasternak substrate , 2017 .

[12]  M. Barati,et al.  Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations , 2017 .

[13]  A. Zenkour,et al.  Vibration and bending analyses of magneto–electro–thermo-elastic sandwich microplates resting on viscoelastic foundation , 2017 .

[14]  N. K. Jain,et al.  Analytical modeling for nonlinear vibration analysis of partially cracked thin magneto-electro-elastic plate coupled with fluid , 2017 .

[15]  M. Hosseini,et al.  Free vibration and biaxial buckling analysis of double magneto-electro-elastic nanoplate-systems coupled by a visco- Pasternak medium via nonlocal elasticity theory , 2017 .

[16]  A. Shooshtari,et al.  Vibration of a multiphase magneto-electro-elastic simply supported rectangular plate subjected to harmonic forces , 2017 .

[17]  Changping Chen,et al.  Nonlinear Responses of Rectangular Magnetoelectroelastic Plates with Transverse Shear Deformation , 2016 .

[18]  A. Shooshtari,et al.  Vibration Analysis of a Magnetoelectroelastic Rectangular Plate Based on a Higher-Order Shear Deformation Theory , 2016 .

[19]  O. Rahmani,et al.  Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation , 2016 .

[20]  R. Ansari,et al.  Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto–electro–thermo elastic nanobeams , 2015 .

[21]  Alireza Shooshtari,et al.  Large amplitude free vibration of symmetrically laminated magneto-electro-elastic rectangular plates on Pasternak type foundation , 2015 .

[22]  A. Shooshtari,et al.  Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doubly-curved shell on elastic foundation , 2015 .

[23]  Reza Ansari,et al.  Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory , 2015 .

[24]  Alireza Shooshtari,et al.  Nonlinear free vibration of magneto-electro-elastic rectangular plates , 2015 .

[25]  Alireza Shooshtari,et al.  Free vibration analysis of a magneto-electro-elastic doubly-curved shell resting on a Pasternak-type elastic foundation , 2014 .

[26]  Paul R. Heyliger,et al.  Free vibration of three-dimensional multilayered magneto-electro-elastic plates under combined clamped/free boundary conditions , 2014 .

[27]  Yansong Li,et al.  Free vibration analysis of magnetoelectroelastic plate resting on a Pasternak foundation , 2014 .

[28]  Feng Qian,et al.  State vector approach of free-vibration analysis of magneto-electro-elastic hybrid laminated plates , 2010 .

[29]  Weiqiu Chen,et al.  On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates , 2005 .

[30]  Ernian Pan,et al.  FREE VIBRATIONS OF SIMPLY SUPPORTED AND MULTILAYERED MAGNETO-ELECTRO-ELASTIC PLATES , 2002 .

[31]  E. Pan,et al.  Exact Solution for Simply Supported and Multilayered Magneto-Electro-Elastic Plates , 2001 .

[32]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .