Effects of High Pressure on the Bandgap and the d–d Crystal Field Transitions in Wolframite NiWO4

[1]  J. Sunarso,et al.  Regulating the hole transfer from CuWO4 photoanode to NiWO4 electrocatalyst for enhanced water oxidation performance , 2022, International Journal of Hydrogen Energy.

[2]  C. Beavers,et al.  Characterization of the high-pressure and high-temperature phase diagram and equation of state of chromium , 2021, Scientific Reports.

[3]  Jiang Tang,et al.  Pressure-Driven Reverse Intersystem Crossing: New Path toward Bright Deep-Blue Emission of Lead-Free Halide Double Perovskites. , 2021, Journal of the American Chemical Society.

[4]  M. Sasidharan,et al.  Tuning the non-linear optical absorption properties of Eu3+-doped NiWO4 nanostructures , 2021, Journal of Materials Science: Materials in Electronics.

[5]  N. Arul,et al.  Structural characterization, morphology, optical and colorimetric properties of NiWO4 crystals synthesized by the co-precipitation and polymeric precursor methods , 2020 .

[6]  J. M'Peko,et al.  NiWO4 powders prepared via polymeric precursor method for application as ceramic luminescent pigments , 2020, Journal of Advanced Ceramics.

[7]  Young-Il Kim,et al.  Effective charge separation in rGO/NiWO4@Au photocatalyst for efficient CO2 reduction under visible light , 2020 .

[8]  G. Cao,et al.  Amorphous NiWO4 Nanospheres with High-Conductivity and -Capacitive Performance for Supercapacitors , 2019 .

[9]  Zhiliang Jin,et al.  2D/1D Zn0.7Cd0.3S p-n heterogeneous junction enhanced with NiWO4 for efficient photocatalytic hydrogen evolution. , 2019, Journal of colloid and interface science.

[10]  S. Kaczmarek,et al.  High-Pressure Low-Temperature Optical Studies of BaWO4:Ce,Na Crystals. , 2019, Inorganic chemistry.

[11]  T. White,et al.  Pressure-Engineered Structural and Optical Properties of Two-Dimensional (C4H9NH3)2PbI4 Perovskite Exfoliated nm-Thin Flakes. , 2018, Journal of the American Chemical Society.

[12]  D. Errandonea,et al.  A Brief Review of the Effects of Pressure on Wolframite-Type Oxides , 2018 .

[13]  Matthew D. Wilson,et al.  Femtosecond laser ablation of cadmium tungstate for scintillator arrays , 2016 .

[14]  J. A. Aramburu,et al.  Origin of the Anomalous Color of Egyptian and Han Blue Historical Pigments: Going beyond the Complex Approximation in Ligand Field Theory. , 2016 .

[15]  L. Dubrovinsky,et al.  High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover , 2015 .

[16]  A. K. Tyagi,et al.  Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph , 2015, 1503.00316.

[17]  M. Mohamed,et al.  Unprecedented high photocatalytic activity of nanocrystalline WO3/NiWO4 hetero-junction towards dye degradation: Effect of template and synthesis conditions , 2014 .

[18]  P. Woodward,et al.  Metal-to-metal charge transfer in AWO4 (A = Mg, Mn, Co, Ni, Cu, or Zn) compounds with the wolframite structure. , 2014, Inorganic chemistry.

[19]  M. N. Sanz-Ortiz,et al.  Optical absorption and Raman spectroscopy of CuWO4 , 2010 .

[20]  H. Kraus,et al.  Performance of scintillation materials at cryogenic temperatures , 2010, 1001.5461.

[21]  A. Romero,et al.  High-pressure phase transitions and compressibility of wolframite-type tungstates , 2009, 0911.5609.

[22]  E. Longo,et al.  Influence of the thermal treatment in the crystallization of NiWO4 and ZnWO4 , 2009 .

[23]  C. Tu,et al.  High-pressure X-ray diffraction study of SrMoO4 and pressure-induced structural changes , 2007, 0708.0028.

[24]  L. Stodolsky,et al.  Dark-matter search with CRESST , 2006 .

[25]  A. Benoit,et al.  EURECA ? the European future of cryogenic dark matter searches , 2006 .

[26]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .