Nonlinear performance of a PI controlled missile: an explanation

Considers the practical interest of an approach to nonlinear system analysis. Based on the incremental norm, this approach proposes performance and robustness analysis criteria. Using computationally efficient tests involving linear matrix inequality optimization, these criteria enable us to guarantee the performance and the robustness of a realistic PI controlled nonlinear missile.

[1]  I. Sandberg Some results on the theory of physical systems governed by nonlinear functional equations , 1965 .

[2]  G. Zames On the input-output stability of time-varying nonlinear feedback systems--Part II: Conditions involving circles in the frequency plane and sector nonlinearities , 1966 .

[3]  Jan C. Willems,et al.  The Analysis of Feedback Systems , 1971 .

[4]  J. Willems The circle criterion and quadratic Lyapunov functions for stability analysis , 1973 .

[5]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[6]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[7]  John Doyle,et al.  Structured uncertainty in control system design , 1985, 1985 24th IEEE Conference on Decision and Control.

[8]  Wilson J. Rugh,et al.  Analytical Framework for Gain Scheduling , 1990, 1990 American Control Conference.

[9]  Kevin A. Wise,et al.  A Comparison of Six Robustness Tests Evaluating Missile Autopilot Robustness to Uncertain Aerodynamics , 1992, 1990 American Control Conference.

[10]  Gain Scheduling: Potential Hazards and Possible Remedies , 1992, 1991 American Control Conference.

[11]  R. T. Reichert Dynamic scheduling of modern-robust-control autopilot designs for missiles , 1992 .

[12]  Jeff S. Shamma,et al.  Gain-Scheduled Missile Autopilot Design Using Linear Parameter Varying Transformations , 1993 .

[13]  P. H. Lee,et al.  A Multiplier Method for Computing Real Multivariable Stability Margin , 1993 .

[14]  M. Safonov,et al.  Real/complex multivariable stability margin computation via generalized Popov multiplier-LMI approach , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[15]  S. Monaco,et al.  A possible extension of H/sub /spl infin// control to the nonlinear context , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[16]  Gérard Scorletti,et al.  Control of rational systems using linear-fractional representations and linear matrix inequalities , 1996, Autom..

[17]  Gary J. Balas,et al.  Optimally scaled H-infinity full information control synthesis with real uncertainty , 1996 .

[18]  Vincent Fromion,et al.  Robustness and stability of LPV plants through frozen systems analysis , 1996 .

[19]  Vincent Fromion,et al.  Application of real/mixed computational techniques to anH8 missile autopilot , 1996 .

[20]  S. Monaco,et al.  Asymptotic properties of incrementally stable systems , 1996, IEEE Trans. Autom. Control..

[21]  S. Monaco,et al.  A link between input-output stability and Lyapunov stability , 1996 .

[22]  Vincent Promion Some results on the behavior of Lipschitz continuous systems , 1997, 1997 European Control Conference (ECC).

[23]  L. Ghaoui,et al.  IMPROVED LMI CONDITIONS FOR GAIN SCHEDULING AND RELATED CONTROL PROBLEMS , 1998 .