Asymptotic convergence of degree‐raising
暂无分享,去创建一个
[1] Tom Lyche,et al. Mathematical methods in computer aided geometric design , 1989 .
[2] Leif Kobbelt,et al. Convergence of subdivision and degree elevation , 1994, Adv. Comput. Math..
[3] Wu Zhengchang. Norm of the Bernstein left quasi-interpolant operator , 1991 .
[4] Hartmut Prautzsch,et al. Arbitrarily high degree elevation of Bézier representations , 1996, Comput. Aided Geom. Des..
[5] Yasuo Kageyama. Generalization of the Left Bernstein Quasi-Interpolants , 1998 .
[6] T. Goodman. Shape preserving representations , 1989 .
[7] C. R. Deboor,et al. A practical guide to splines , 1978 .
[8] P. Sablonnière. Representation of quasi-interpolants as differential operators and applications , 1999 .
[9] A family of Bernstein quasi-interpolants on [0,1] , 1992 .
[10] M. Neamtu. Subdividing Multivariate Polynomials Over Simplices in Bernstein-Bézier Form Without de Casteljau Algorithm , 1991, Curves and Surfaces.
[11] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[12] Elaine COHEN,et al. Rates of convergence of control polygons , 1985, Comput. Aided Geom. Des..
[13] Paul Sablonnière. Discrete Bézier Curves and Surfaces , 1992 .
[14] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[15] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .