Molecular dynamics investigations on the size-dependent ferroelectric behavior of BaTiO3 nanowires
暂无分享,去创建一个
[1] T. Kitamura,et al. Ab initio study of ferroelectricity in edged PbTiO3 nanowires under axial tension , 2009 .
[2] D. Fang,et al. The size and strain effects on the electric-field-induced domain evolution and hysteresis loop in ferroelectric BaTiO3 nanofilms , 2008 .
[3] D. Fang,et al. Systematic study of the ferroelectric properties of Pb(Zr0.5Ti0.5)O3 nanowires , 2008 .
[4] A. Kolesnikov,et al. Large phonon band gap inSrTiO3and the vibrational signatures of ferroelectricity inATiO3perovskites: First-principles lattice dynamics and inelastic neutron scattering , 2008, 0803.1729.
[5] Daining Fang,et al. Size-dependent ferroelectric behaviors of BaTiO3 nanowires , 2008 .
[6] Min-Feng Yu,et al. Axial polarization switching in ferroelectric BaTiO3 nanowire , 2007 .
[7] J. Scott,et al. Applications of Modern Ferroelectrics , 2007, Science.
[8] Min-Feng Yu,et al. One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire , 2006 .
[9] James F. Scott,et al. Ferroelectric domain periodicities in nanocolumns of single crystal barium titanate , 2006 .
[10] Hongkun Park,et al. Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. , 2006, Nano letters.
[11] I. Naumov,et al. Spontaneous polarization in one-dimensional Pb(ZrTi)O3 nanowires. , 2005, Physical review letters.
[12] C. Mueller,et al. A LARGE SCALE PRODUCTION TEST OF THIN FILM Ba x Sr 1−x TiO 3 MICROWAVE PHASE SHIFTERS FABRICATED ON LaAlO3 SUBSTRATES , 2005 .
[13] Zhigang Wu,et al. More accurate generalized gradient approximation for solids , 2005, cond-mat/0508004.
[14] J. Junquera,et al. Finite-size effects in BaTiO3 nanowires , 2005, cond-mat/0503362.
[15] K. Rabe,et al. Physics of thin-film ferroelectric oxides , 2005, cond-mat/0503372.
[16] M. Cantoni,et al. Piezoelectric Response and Polarization Switching in Small Anisotropic Perovskite Particles , 2004 .
[17] Hongkun Park,et al. Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy , 2002 .
[18] D. Sánchez-Portal,et al. The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.
[19] U. Gösele,et al. Polarization imprint and size effects in mesoscopic ferroelectric structures , 2001 .
[20] M. Sepliarsky,et al. Atomistic modelling of BaTiO3 based on first-principles calculations , 1999 .
[21] James F. Scott,et al. The Physics of Ferroelectric Memories , 1998 .
[22] D. Vanderbilt,et al. Giant LO-TO splittings in perovskite ferroelectrics. , 1994, Physical review letters.
[23] D Fincham,et al. Shell model simulations by adiabatic dynamics , 1993 .
[24] Soler,et al. Optimal meshes for integrals in real- and reciprocal-space unit cells. , 1992, Physical review. B, Condensed matter.
[25] G. Kugel,et al. Lattice dynamics of BaTiO3 in the cubic phase , 1989 .
[26] D. Bauerle,et al. Origin of Raman Scattering and Ferroelectricity in Oxidic Perovskites , 1976 .
[27] R. Cowley,et al. Lattice Dynamics and Phase Transitions of Strontium Titanate , 1964 .
[28] H. H. Wieder,et al. Electrical Behavior of Barium Titanatge Single Crystals at Low Temperatures , 1955 .
[29] A. C. Lawson,et al. Structures of the ferroelectric phases of barium titanate , 1993 .
[30] J. Duchesne,et al. Errata: ``Raman Spectrum of Tetraethyl Orthosilicate'' and ``Raman Spectrum of Trimethyl Silicon Chloride'' , 1949 .