Experimental Validation of Optimal Parameter and Uncertainty Estimation for Structural Systems Using a Shuffled Complex Evolution Metropolis Algorithm

The uncertainty in parameter estimation arises from structural systems’ input and output measured errors and from structural model errors. An experimental verification of the shuffled complex evolution metropolis algorithm (SCEM-UA) for identifying the optimal parameters of structural systems and estimating their uncertainty is presented. First, the estimation framework is theoretically developed. The SCEM-UA algorithm is employed to search through feasible parameters’ space and to infer the posterior distribution of the parameters automatically. The resulting posterior parameter distribution then provides the most likely estimation of parameter sets that produces the best model performance. The algorithm is subsequently validated through both numerical simulation and shaking table experiment for estimating the parameters of structural systems considering the uncertainty of available information. Finally, the proposed algorithm is extended to identify the uncertain physical parameters of a nonlinear structural system with a particle mass tuned damper (PTMD). The results demonstrate that the proposed algorithm can effectively estimate parameters with uncertainty for nonlinear structural systems, and it has a stronger anti-noise capability. Notably, the SCEM-UA method not only shows better global optimization capability compared with other heuristic optimization methods, but it also has the ability to simultaneously estimate the uncertainties associated with the posterior distributions of the structural parameters within a single optimization run.

[1]  He-sheng Tang,et al.  Differential evolution strategy for structural system identification , 2008 .

[2]  Brett Ninness,et al.  Bayesian system identification via Markov chain Monte Carlo techniques , 2010, Autom..

[3]  Francisco Herrera,et al.  An Insight into Bio-inspired and Evolutionary Algorithms for Global Optimization: Review, Analysis, and Lessons Learnt over a Decade of Competitions , 2018, Cognitive Computation.

[4]  Hamed Kharrati,et al.  Parameter identification of engineering problems using a differential shuffled complex evolution , 2019, Artificial Intelligence Review.

[5]  Indrajeet Chaubey,et al.  Parameter estimation of SWAT and quantification of consequent confidence bands of model simulations , 2018, Environmental Earth Sciences.

[6]  Yoshiyuki Suzuki,et al.  Identification of hysteretic systems with slip using bootstrap filter , 2004 .

[7]  Bo Wen,et al.  Parameter identification for structural health monitoring based on Monte Carlo method and likelihood estimate , 2018, Int. J. Distributed Sens. Networks.

[8]  Heung-Fai Lam,et al.  Railway ballast damage detection by Markov chain Monte Carlo-based Bayesian method , 2018 .

[9]  Raimondo Betti,et al.  Identification of Structural Systems using an Evolutionary Strategy , 2004 .

[10]  Songtao Xue,et al.  Big Bang-Big Crunch optimization for parameter estimation in structural systems , 2010 .

[11]  Jun Zhang,et al.  Particle Swarm Optimization With a Balanceable Fitness Estimation for Many-Objective Optimization Problems , 2018, IEEE Transactions on Evolutionary Computation.

[12]  Conrad D. Heatwole,et al.  Comparing impacts of parameter and spatial data uncertainty for a grid-based distributed watershed model , 2016 .

[13]  Kaoshan Dai,et al.  Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation , 2017 .

[14]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[15]  Chan Ghee Koh,et al.  Modified genetic algorithm strategy for structural identification , 2006 .

[16]  Raimondo Betti,et al.  Structural identification with incomplete instrumentation and global identifiability requirements under base excitation , 2015 .

[17]  Nicholas A J Lieven,et al.  DYNAMIC FINITE ELEMENT MODEL UPDATING USING SIMULATED ANNEALING AND GENETIC ALGORITHMS , 1997 .

[18]  Breanndán Ó Nualláin,et al.  Parameter optimisation and uncertainty assessment for large-scale streamflow simulation with the LISFLOOD model , 2007 .

[19]  Jun Hu,et al.  Markov chain Monte Carlo-based Bayesian model updating of a sailboat-shaped building using a parallel technique , 2019, Engineering Structures.

[20]  S. Sorooshian,et al.  Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting model , 2006, Journal of Hydrology.

[21]  Vladimir V. Mokshin,et al.  Adaptive genetic algorithms used to analyze behavior of complex system , 2019, Commun. Nonlinear Sci. Numer. Simul..

[22]  Angus R. Simpson,et al.  Parameter identification of fluid line networks by frequency-domain maximum likelihood estimation , 2013 .

[23]  J. Beck,et al.  Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .

[24]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[25]  Karol R. Opara,et al.  Differential Evolution: A survey of theoretical analyses , 2019, Swarm Evol. Comput..

[26]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[27]  G. Hancock,et al.  Performance of Bootstrapping Approaches to Model Test Statistics and Parameter Standard Error Estimation in Structural Equation Modeling , 2001 .

[28]  Ashley F. Emery,et al.  Estimating deterministic parameters by Bayesian inference with emphasis on estimating the uncertainty of the parameters , 2009 .

[29]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[30]  Zheng Lu,et al.  Particle impact dampers: Past, present, and future , 2018 .

[31]  W. Price Global optimization algorithms for a CAD workstation , 1987 .

[32]  Javier Cara,et al.  Modal identification of structures from input/output data using the expectation–maximization algorithm and uncertainty quantification by mean of the bootstrap , 2018, Structural Control and Health Monitoring.