New initiatives to bolster analytical facilities in India for in situ U-Th-Pb Geochronology, Hf and O isotope systematics in zircon: a focus on laboratories at the IUAC, WIHG and CSIR-NGRI

New Initiatives to Bolster Analytical Facilities in India for in situ U-ThPb Geochronology, Hf and O Isotope Systematics in Zircon: A Focus on Laboratories at the IUAC,WIHG and CSIR-NGRI Y J BHASKAR RAO, SUNDEEP CHOPRA, PANKAJ KUMAR, P K MUKHERJEE, SAURABH SINGHAL, VIKAS ADLAKHA, T VIJAYA KUMAR, B SREENIVAS and E V S S K BABU CSIR-National Geophysical Research Institute, Uppal Road, Hyderabad 500 007, India National Geochronology Facility, Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067, India Wadia Institute of Himalayan Geology (WIHG), Dehradun, India

[1]  P. Mukherjee,et al.  Terrane characterization in the Himalaya since Paleoproterozoic , 2020, Episodes.

[2]  Pankaj Kumar,et al.  Paleoenvironmental shifts spanning the last ~6000 years and recent anthropogenic controls inferred from a high-altitude temperate lake: Anchar Lake, NW Himalaya , 2020, The Holocene.

[3]  P. Mukherjee,et al.  U-Pb zircon ages and Sm-Nd isotopic characteristics of the Lesser and Great Himalayan sequences, Uttarakhand Himalaya, and their regional tectonic implications , 2019, Gondwana Research.

[4]  S. Dey,et al.  A new cache of Eoarchaean detrital zircons from the Singhbhum craton, eastern India and constraints on early Earth geodynamics , 2019, Geoscience Frontiers.

[5]  P. Srivastava,et al.  Late Pleistocene history of aggradation and incision, provenance and channel connectivity of the Zanskar River, NW Himalaya , 2019, Global and Planetary Change.

[6]  P. Mukherjee,et al.  Accuracy and precision of U–Pb zircon geochronology at high spatial resolution (7–20 μm spots) by laser ablation-ICP-single-collector-sector-field-mass spectrometry , 2019, Journal of Analytical Atomic Spectrometry.

[7]  D. Kanjilal,et al.  AMS and upcoming geochronology facility at Inter University Accelerator Centre (IUAC), New Delhi, India , 2019, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

[8]  Dhirendra Kumar,et al.  Climate events between 47.5 and 1 ka BP in glaciated terrain of the Ny-Alesund region, Arctic, using geomorphology and sedimentology of diversified morphological zones , 2018, Polar Science.

[9]  S. Singhal,et al.  Age and geochemistry of the Paleoproterozoic Bhatwari Gneiss of Garhwal Lesser Himalaya, NW India: implications for the pre-Himalayan magmatic history of the Lesser Himalayan basement rocks , 2018, Special Publications.

[10]  Meenakshi,et al.  High resolution 14C AMS ages (∼50 ka) of organic matter associated with the loess-palaeosol Holocene-Late Pleistocene (8–130 ka) sediments of Dilpur Formation, Karewa Group, Kashmir, India , 2018, Quaternary Geochronology.

[11]  S. Singhal,et al.  U-Pb geochronology and geochemistry from the Kumaun Himalaya, NW India, reveal Paleoproterozoic arc magmatism related to formation of the Columbia supercontinent , 2018 .

[12]  S. Singhal,et al.  Migmatization and intrusion of “S‐type” granites in the trans‐Himalayan Ladakh Magmatic Arc of north India and their bearing on Indo‐Eurasian collisional tectonics , 2018 .

[13]  J. Sanwal,et al.  On the paleoseismic evidence of the 1803 earthquake rupture (or lack of it) along the frontal thrust of the Kumaun Himalaya , 2018 .

[14]  B. Sreenivas,et al.  Evidence for Neoarchean basement for the Deccan Volcanic flows around Koyna-Warna region, western India: Zircon U-Pb age and Hf-isotopic results , 2017, Journal of the Geological Society of India.

[15]  S. S. Bhakuni,et al.  Tectonic implications of U-Pb (zircon) Geochronology of Chor Granitoids of the Lesser Himalaya, Himachal Pradesh, NW Himalaya , 2017 .

[16]  Peter A. Cawood,et al.  Earth's Continental Lithosphere Through Time , 2017 .

[17]  Takao Yamaguchi,et al.  What Hf isotopes in zircon tell us about crust–mantle evolution , 2017 .

[18]  S. Rai,et al.  In situ U-Pb Zircon Micro-Geochronology of MCT Zone Rocks in the Lesser Himalaya Using LA–MC–ICPMS Technique , 2017 .

[19]  V. M. Tiwari,et al.  Investigations of continued reservoir triggered seismicity at Koyna, India , 2016, Special Publications.

[20]  D. Kanjilal,et al.  A new AMS facility at Inter University Accelerator Centre, New Delhi , 2015 .

[21]  N. Roberts,et al.  The zircon archive of continent formation through time , 2014 .

[22]  Peter A. Cawood,et al.  The continental record and the generation of continental crust , 2013 .

[23]  Peter A. Cawood,et al.  A Change in the Geodynamics of Continental Growth 3 Billion Years Ago , 2012, Science.

[24]  D. Kanjilal,et al.  10Be measurements at IUAC-AMS facility , 2011 .

[25]  Peter J. Voice,et al.  Quantifying the Timing and Rate of Crustal Evolution: Global Compilation of Radiometrically Dated Detrital Zircon Grains , 2011, The Journal of Geology.

[26]  W. Griffin,et al.  The growth of the continental crust: Constraints from zircon Hf-isotope data , 2010 .

[27]  Richard C. Aster,et al.  Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth , 2010 .

[28]  T. Harrison,et al.  Early (≥ 4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry results for Hadean zircons , 2008 .

[29]  P. Sylvester,et al.  Present Trends and the Future of Zircon in Geochronology: Laser Ablation ICPMS , 2003 .

[30]  J. Valley Oxygen Isotopes in Zircon , 2003 .

[31]  F. Corfu,et al.  Atlas of Zircon Textures , 2003 .

[32]  R. Parrish,et al.  Zircon U-Th-Pb Geochronology by Isotope Dilution -- Thermal Ionization Mass Spectrometry (ID-TIMS) , 2003 .

[33]  I. Williams,et al.  Considerations in Zircon Geochronology by SIMS , 2003 .

[34]  R. Maas,et al.  Lu–Hf and Sm–Nd isotope systems in zircon , 2003 .

[35]  Simon A. Wilde,et al.  Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago , 2001, Nature.

[36]  R. Parrish An improved micro-capsule for zircon dissolution in UPb geochronology , 1987 .

[37]  W. Compston,et al.  U‐Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass‐resolution ion microprobe , 1984 .

[38]  T. Krogh Improved accuracy of U-Pb zircon dating by selection of more concordant fractions using a high gradient magnetic separation technique , 1982 .

[39]  T. Krogh,et al.  Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique , 1982 .

[40]  V. Guinn Principles of Isotope Geology , 1978 .

[41]  G. Wasserburg,et al.  U-Th-Pb systematics in lunar highland samples from the Luna 20 and Apollo 16 missions , 1972 .

[42]  G. Wetherill Discordant uranium‐lead ages, I , 1956 .