Design of High-Linearity Wideband Power Amplifiers

The power amplifier is usually the last active element in an RF transmitter front-end, and usually one of the most critical blocks. It is the main contributor to the front-end power consumption, and its linearity determines the overall performance of the communication link. This chapter will discuss considerations for the design of wideband mmW PAs, applying the concepts to the design of an E-band power amplifier for multi-Gbps spectrally efficient communication links. First, the most representative performance metrics will be described, and different design approaches and architectures for mmW PAs will be reviewed. Then, the design of the Eband PA will be presented, validating its performance with measurement results.

[1]  Jeng-Han Tsai,et al.  Design and Analysis of a 55–71-GHz Compact and Broadband Distributed Active Transformer Power Amplifier in 90-nm CMOS Process , 2009, IEEE Transactions on Microwave Theory and Techniques.

[2]  U.R. Pfeiffer,et al.  A 20 dBm Fully-Integrated 60 GHz SiGe Power Amplifier With Automatic Level Control , 2007, IEEE Journal of Solid-State Circuits.

[3]  O. Katz,et al.  A 20dBm E-band power amplifier in SiGe BiCMOS technology , 2012, 2012 7th European Microwave Integrated Circuit Conference.

[4]  Yi Zhao,et al.  A Wideband, Dual-Path, Millimeter-Wave Power Amplifier With 20 dBm Output Power and PAE Above 15% in 130 nm SiGe-BiCMOS , 2012, IEEE Journal of Solid-State Circuits.

[5]  Taylor Barton,et al.  Not Just a Phase: Outphasing Power Amplifiers , 2016, IEEE Microwave Magazine.

[6]  Chunshu Li,et al.  Digitally Modulated CMOS Polar Transmitters for Highly-Efficient mm-Wave Wireless Communication , 2016, IEEE Journal of Solid-State Circuits.

[7]  Joseph Sylvester Chang,et al.  A review on supply modulators for Envelope-Tracking Power Amplifiers , 2016, 2016 International Symposium on Integrated Circuits (ISIC).

[8]  Hossein Hashemi,et al.  Performance Limits, Design and Implementation of mm-Wave SiGe HBT Class-E and Stacked Class-E Power Amplifiers , 2014, IEEE Journal of Solid-State Circuits.

[9]  U.R. Pfeiffer,et al.  A 23-dBm 60-GHz Distributed Active Transformer in a Silicon Process Technology , 2007, IEEE Transactions on Microwave Theory and Techniques.

[10]  Yan Li,et al.  Recent progress on high-efficiency CMOS and SiGe RF power amplifier design , 2016, 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR).

[11]  Yasushi Itoh,et al.  Stabilization of millimeter‐wave multistage amplifier using amplitude‐and‐phase setting circuits , 2001 .

[12]  Patrick Reynaert,et al.  Transformer-Based Doherty Power Amplifiers for mm-Wave Applications in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[13]  G. Palmisano,et al.  A 15-dBm SiGe BiCMOS PA for 77-GHz Automotive Radar , 2011, IEEE Transactions on Microwave Theory and Techniques.

[14]  H. Chireix High Power Outphasing Modulation , 1935, Proceedings of the Institute of Radio Engineers.

[15]  Benny Sheinman,et al.  A fully integrated SiGe E-BAND transceiver chipset for broadband point-to-point communication , 2012, 2012 IEEE Radio and Wireless Symposium.

[16]  Anh-Vu Pham,et al.  A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[17]  R. Berenguer,et al.  Millimeter-Wave Self-Healing Power Amplifier With Adaptive Amplitude and Phase Linearization in 65-nm CMOS , 2012, IEEE Transactions on Microwave Theory and Techniques.

[18]  O. Katz,et al.  A 16.2 Gbps 60 GHz SiGe transmitter for outdoor wireless links , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[19]  Christian Fager,et al.  Doherty's Legacy: A History of the Doherty Power Amplifier from 1936 to the Present Day , 2016, IEEE Microwave Magazine.

[20]  Milton Feng,et al.  W-band monolithic CPW Wilkinson CMOS power amplifier , 2011, 2011 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications.

[21]  Behzad Razavi,et al.  Design of Analog CMOS Integrated Circuits , 1999 .

[22]  Hossein Hashemi,et al.  High-Breakdown, High- $f_{\mathrm{ max}}$ Multiport Stacked-Transistor Topologies for the ${W}$ -Band Power Amplifiers , 2017, IEEE Journal of Solid-State Circuits.

[23]  W. H. Doherty A New High Efficiency Power Amplifier for Modulated Waves , 1936 .

[24]  P. Reynaert,et al.  Design Considerations for 60 GHz Transformer-Coupled CMOS Power Amplifiers , 2009, IEEE Journal of Solid-State Circuits.

[26]  Bernd Heinemann,et al.  An 8-way power-combining E-band amplifier in a SiGe HBT technology , 2014, 2014 9th European Microwave Integrated Circuit Conference.

[27]  Gabriel M. Rebeiz,et al.  A High-Linearity 76–85-GHz 16-Element 8-Transmit/8-Receive Phased-Array Chip With High Isolation and Flip-Chip Packaging , 2014, IEEE Transactions on Microwave Theory and Techniques.

[28]  Gabriel M. Rebeiz,et al.  A wideband high-efficiency 79–97 GHz SiGe linear power amplifier with ≫ 90 mW output , 2008, 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[29]  Benny Sheinman,et al.  A millimeter-wave SiGe power amplifier with highly selective image reject filter , 2011, 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011).

[30]  Sorin P. Voinigescu,et al.  An 18-Gb/s, Direct QPSK Modulation SiGe BiCMOS Transceiver for Last Mile Links in the 70–80 GHz Band , 2009, IEEE Journal of Solid-State Circuits.

[31]  Anding Zhu,et al.  Back to the Future with PAs [From the Guest Editors' Desk] , 2016 .

[32]  Jean-Baptiste Begueret,et al.  Shielding structures for millimeter-wave integrated transformers , 2009, 2009 16th IEEE International Conference on Electronics, Circuits and Systems - (ICECS 2009).

[33]  David del Rio,et al.  Layout-aware design methodology for a 75 GHz power amplifier in a 55 nm SiGe technology , 2016, Integr..

[34]  Patrick Reynaert,et al.  An E-Band Power Amplifier With Broadband Parallel-Series Power Combiner in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[35]  Henrik Sjöland,et al.  A 1V SiGe power amplifier for 81–86 GHz E-band , 2013, 2013 NORCHIP.

[36]  D. Pache,et al.  Millimeter-wave chip set for 77–81 GHz automotive radar application , 2011, 2011 IEEE 9th International New Circuits and systems conference.

[37]  K. Aufinger,et al.  A 160-GHz Subharmonic Transmitter and Receiver Chipset in an SiGe HBT Technology , 2012, IEEE Transactions on Microwave Theory and Techniques.

[38]  Calvin Plett,et al.  Adapting the Doherty amplifier for millimetre-wave CMOS applications , 2011, 2011 IEEE 9th International New Circuits and systems conference.

[39]  Hector Solar Ruiz,et al.  Linear CMOS RF Power Amplifiers , 2014 .

[40]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[41]  P. Chevalier,et al.  A 55 nm triple gate oxide 9 metal layers SiGe BiCMOS technology featuring 320 GHz fT / 370 GHz fMAX HBT and high-Q millimeter-wave passives , 2014, 2014 IEEE International Electron Devices Meeting.

[42]  M. Tiebout,et al.  Holistic design of 8-way combining transformers in SiGe technology for use in millimetre-wave power amplifiers , 2013, 2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[43]  R. Plana,et al.  Design techniques and considerations for mmwave SiGe power amplifiers , 2009, 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC).

[44]  Allen Katz,et al.  The Evolution of PA Linearization: From Classic Feedforward and Feedback Through Analog and Digital Predistortion , 2016, IEEE Microwave Magazine.