Microstructural evolution and improved hydrogen storage properties for the Li3N–MgH2 system by addition of LiNH2 during the hydrogenation/dehydrogenation

[1]  A. Goudy,et al.  Potassium, rubidium and cesium hydrides as dehydrogenation catalysts for the lithium amide/magnesium hydride system , 2015 .

[2]  Ying Wu,et al.  Effects of additives on the microstructure and hydrogen storage properties of the Li3N–MgH2 mixture , 2014 .

[3]  Ying Wu,et al.  Hydrogen absorption–desorption mechanisms for the ball-milled Li3N–MgH2 (1:1) mixture , 2014 .

[4]  K. Chou,et al.  Improved hydrogen storage properties of LiBH4 doped Li–N–H system , 2014 .

[5]  M. Fichtner,et al.  Material properties and empirical rate equations for hydrogen sorption reactions in 2 LiNH2–1.1 MgH2–0.1 LiBH4–3 wt.% ZrCoH3 , 2014 .

[6]  H. Pan,et al.  Improved hydrogen storage kinetics of the Li-Mg-N-H system by addition of Mg(BH4)2. , 2013, Dalton transactions.

[7]  H. Pan,et al.  Reaction Pathways for Hydrogen Uptake of the Li–Mg–N-Based Hydrogen Storage System , 2012 .

[8]  C. Price,et al.  THE EFFECTS OF HALIDE MODIFIERS ON THE SORPTION KINETICS OF THE LI-MG-N-H SYSTEM , 2012 .

[9]  Yong‐Mook Kang,et al.  Synthesis and hydrogenation properties of lithium magnesium nitride , 2011 .

[10]  Chu Liang,et al.  Li–Mg–N–H-based combination systems for hydrogen storage , 2011 .

[11]  C. Price,et al.  Affects of mechanical milling and metal oxide additives on sorption kinetics of 1:1 LiNH 2 /MgH 2 mixture , 2011 .

[12]  Zhigang Zak Fang,et al.  Effect of milling intensity on the formation of LiMgN from the dehydrogenation of LiNH2–MgH2 (1:1) mixture , 2010 .

[13]  Chu Liang,et al.  Hydrogen storage reaction over a ternary imide Li2Mg2N3H3. , 2010, Physical chemistry chemical physics : PCCP.

[14]  Yan Liang,et al.  Effect of Li_3N additive on the hydrogen storage properties of Li-Mg-N-H system , 2009 .

[15]  Yan Liang,et al.  Enhanced Hydrogen Storage Properties of Li−Mg−N−H System Prepared by Reacting Mg(NH2)2 with Li3N , 2009 .

[16]  Lai-Peng Ma,et al.  Catalytically enhanced dehydrogenation of Li–Mg–N–H hydrogen storage material by transition metal nitrides , 2009 .

[17]  K. Luo,et al.  Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system. , 2009, Journal of the American Chemical Society.

[18]  Jianhui Wang,et al.  Hydrogen Storage in a LiNH 2 -MgH 2 (1:1) System , 2008 .

[19]  J. Hanson,et al.  Crystal structure determination and reaction pathway of amide–hydride mixtures , 2008 .

[20]  Yongfeng Liu,et al.  Structural and Compositional Changes during Hydrogenation/Dehydrogenation of the Li−Mg−N−H System , 2007 .

[21]  Zhigang Zak Fang,et al.  Potential of Binary Lithium Magnesium Nitride for Hydrogen Storage Applications , 2007 .

[22]  K. Murata,et al.  Hydrogen release from Mg(NH2)2-MgH2 through mechanochemical reaction. , 2006, The journal of physical chemistry. B.

[23]  Ping Chen,et al.  Mechanistic investigations on the heterogeneous solid-state reaction of magnesium amides and lithium hydrides. , 2006, The journal of physical chemistry. B.

[24]  Guotao Wu,et al.  Investigations on hydrogen storage over Li–Mg–N–H complex—the effect of compositional changes , 2006 .

[25]  H. Fujii,et al.  Hydrogen storage properties of Li-Mg-N-H systems with different ratios of LiH/Mg(NH2)2. , 2006, The journal of physical chemistry. B.

[26]  S. Sickafoose,et al.  Thermodynamic and structural characterization of the Mg–Li–N–H hydrogen storage system , 2006 .

[27]  E. Ronnebro,et al.  Towards a viable hydrogen storage system for transportation application , 2005 .

[28]  Weifang Luo,et al.  (LiNH2-MgH2): a viable hydrogen storage system , 2004 .

[29]  Jianjiang Hu,et al.  Ternary Imides for Hydrogen Storage , 2004 .

[30]  K. L. Tan,et al.  Interaction between Lithium Amide and Lithium Hydride , 2003 .

[31]  K. L. Tan,et al.  Interaction of hydrogen with metal nitrides and imides , 2002, Nature.