On the dynamics of a vertically driven damped planar pendulum
暂无分享,去创建一个
[1] H. Poincaré,et al. Les méthodes nouvelles de la mécanique céleste , 1899 .
[2] D. J. Ness,et al. Small Oscillations of a Stabilized, Inverted Pendulum , 1967 .
[3] H. Kalmus,et al. The Inverted Pendulum , 1970 .
[4] T. Mckeown. Mechanics , 1970, The Mathematics of Fluid Flow Through Porous Media.
[5] D. Jordan,et al. Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .
[6] B. Koch,et al. Chaotic behaviour of a parametrically excited damped pendulum , 1981 .
[7] M. Hénon,et al. On the numerical computation of Poincaré maps , 1982 .
[8] J. Marsden,et al. Introduction to Dynamics , 1983 .
[9] B. Pompe,et al. Experimental evidence for chaotic behaviour of a parametrically forced pendulum , 1983 .
[10] B. Koch,et al. Subharmonic and homoclinic bifurcations in a parametrically forced pendulum , 1985 .
[11] Bernd Pompe,et al. Experiments on periodic and chaotic motions of a parametrically forced pendulum , 1985 .
[12] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[13] M. Michaelis,et al. Stroboscopic study of the inverted pendulum , 1985 .
[14] Grebogi,et al. Critical exponent of chaotic transients in nonlinear dynamical systems. , 1986, Physical review letters.
[15] Alfred Brian Pippard. The inverted pendulum , 1987 .
[16] H. Risken,et al. Stability of parametrically excited dissipative systems , 1988 .
[17] Smith,et al. Chaos in a parametrically damped pendulum. , 1989, Physical review. A, General physics.
[18] Gregory L. Baker,et al. Chaotic Dynamics: An Introduction , 1990 .
[19] J. Blackburn,et al. Stability and Hopf bifurcations in an inverted pendulum , 1992 .
[20] Edmundson,et al. Transient chaos in a parametrically damped pendulum. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[21] J. Blackburn,et al. Experimental study of an inverted pendulum , 1992 .
[22] T. Mullin,et al. Upside-down pendulums , 1993, Nature.
[23] D. J. Acheson,et al. A pendulum theorem , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[24] W. Martienssen,et al. APPROACHING NONLINEAR DYNAMICS BY STUDYING THE MOTION OF A PENDULUM I: OBSERVING TRAJECTORIES IN STATE SPACE , 1994 .
[25] W. Martienssen,et al. APPROACHING NONLINEAR DYNAMICS BY STUDYING THE MOTION OF A PENDULUM II: ANALYZING CHAOTIC MOTION , 1994 .
[26] Steven R. Bishop,et al. Periodic oscillations and attracting basins for a parametrically excited pendulum , 1994 .
[27] D. J. Acheson,et al. Multiple-nodding oscillations of a driven inverted pendulum , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[28] Stochastic noise and chaotic transients. , 1995, Physical review letters.
[29] Gregory L. Baker,et al. Chaotic dynamics: Contents , 1996 .
[30] John Guckenheimer,et al. A Dynamical System Toolkit with an Interactive Graphical Interface , 1997 .
[31] Robert C. Hilborn,et al. Chaos and Nonlinear Dynamics , 2000 .
[32] G. Gentile,et al. Lindstedt series for perturbations of isochronous systems. II. KAM theorem and stability of the upside-down pendulum , 2000 .
[33] Guido Gentile,et al. On the stability of the upside–down pendulum with damping , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.