On the dynamics of a vertically driven damped planar pendulum

Results on the dynamics of the planar pendulum with parametric vertical timeperiodic forcing are reviewed and extended. Numerical methods are employed to study the various dynamical features of the system about its equilibrium positions. Furthermore, the dynamics of the system far from its equilibrium points is systematically investigated by using phase portraits and Poincaréesections. The attractors and the associated basins of attraction are computed. We also calculate the Lyapunov exponents to show that for some parameter values the dynamics of the pendulum shows sensitivity to initial conditions.

[1]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[2]  D. J. Ness,et al.  Small Oscillations of a Stabilized, Inverted Pendulum , 1967 .

[3]  H. Kalmus,et al.  The Inverted Pendulum , 1970 .

[4]  T. Mckeown Mechanics , 1970, The Mathematics of Fluid Flow Through Porous Media.

[5]  D. Jordan,et al.  Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .

[6]  B. Koch,et al.  Chaotic behaviour of a parametrically excited damped pendulum , 1981 .

[7]  M. Hénon,et al.  On the numerical computation of Poincaré maps , 1982 .

[8]  J. Marsden,et al.  Introduction to Dynamics , 1983 .

[9]  B. Pompe,et al.  Experimental evidence for chaotic behaviour of a parametrically forced pendulum , 1983 .

[10]  B. Koch,et al.  Subharmonic and homoclinic bifurcations in a parametrically forced pendulum , 1985 .

[11]  Bernd Pompe,et al.  Experiments on periodic and chaotic motions of a parametrically forced pendulum , 1985 .

[12]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[13]  M. Michaelis,et al.  Stroboscopic study of the inverted pendulum , 1985 .

[14]  Grebogi,et al.  Critical exponent of chaotic transients in nonlinear dynamical systems. , 1986, Physical review letters.

[15]  Alfred Brian Pippard The inverted pendulum , 1987 .

[16]  H. Risken,et al.  Stability of parametrically excited dissipative systems , 1988 .

[17]  Smith,et al.  Chaos in a parametrically damped pendulum. , 1989, Physical review. A, General physics.

[18]  Gregory L. Baker,et al.  Chaotic Dynamics: An Introduction , 1990 .

[19]  J. Blackburn,et al.  Stability and Hopf bifurcations in an inverted pendulum , 1992 .

[20]  Edmundson,et al.  Transient chaos in a parametrically damped pendulum. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[21]  J. Blackburn,et al.  Experimental study of an inverted pendulum , 1992 .

[22]  T. Mullin,et al.  Upside-down pendulums , 1993, Nature.

[23]  D. J. Acheson,et al.  A pendulum theorem , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[24]  W. Martienssen,et al.  APPROACHING NONLINEAR DYNAMICS BY STUDYING THE MOTION OF A PENDULUM I: OBSERVING TRAJECTORIES IN STATE SPACE , 1994 .

[25]  W. Martienssen,et al.  APPROACHING NONLINEAR DYNAMICS BY STUDYING THE MOTION OF A PENDULUM II: ANALYZING CHAOTIC MOTION , 1994 .

[26]  Steven R. Bishop,et al.  Periodic oscillations and attracting basins for a parametrically excited pendulum , 1994 .

[27]  D. J. Acheson,et al.  Multiple-nodding oscillations of a driven inverted pendulum , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[28]  Stochastic noise and chaotic transients. , 1995, Physical review letters.

[29]  Gregory L. Baker,et al.  Chaotic dynamics: Contents , 1996 .

[30]  John Guckenheimer,et al.  A Dynamical System Toolkit with an Interactive Graphical Interface , 1997 .

[31]  Robert C. Hilborn,et al.  Chaos and Nonlinear Dynamics , 2000 .

[32]  G. Gentile,et al.  Lindstedt series for perturbations of isochronous systems. II. KAM theorem and stability of the upside-down pendulum , 2000 .

[33]  Guido Gentile,et al.  On the stability of the upside–down pendulum with damping , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.