Protein structure determination from pseudocontact shifts using ROSETTA.

Paramagnetic metal ions generate pseudocontact shifts (PCSs) in nuclear magnetic resonance spectra that are manifested as easily measurable changes in chemical shifts. Metals can be incorporated into proteins through metal binding tags, and PCS data constitute powerful long-range restraints on the positions of nuclear spins relative to the coordinate system of the magnetic susceptibility anisotropy tensor (Δχ-tensor) of the metal ion. We show that three-dimensional structures of proteins can reliably be determined using PCS data from a single metal binding site combined with backbone chemical shifts. The program PCS-ROSETTA automatically determines the Δχ-tensor and metal position from the PCS data during the structure calculations, without any prior knowledge of the protein structure. The program can determine structures accurately for proteins of up to 150 residues, offering a powerful new approach to protein structure determination that relies exclusively on readily measurable backbone chemical shifts and easily discriminates between correctly and incorrectly folded conformations.

[1]  R. Schaaper,et al.  Nuclear Magnetic Resonance Solution Structure of the Escherichia coli DNA Polymerase III θ Subunit , 2005 .

[2]  Thomas Huber,et al.  DOTA-amide lanthanide tag for reliable generation of pseudocontact shifts in protein NMR spectra. , 2011, Bioconjugate chemistry.

[3]  N. Dixon,et al.  Structure determination of protein-ligand complexes by transferred paramagnetic shifts. , 2006, Journal of the American Chemical Society.

[4]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[5]  Oliver F. Lange,et al.  Structure prediction for CASP8 with all‐atom refinement using Rosetta , 2009, Proteins.

[6]  Guido Pintacuda,et al.  Lanthanide labeling offers fast NMR approach to 3D structure determinations of protein-protein complexes. , 2006, Journal of the American Chemical Society.

[7]  N. Dixon,et al.  Efficient χ-tensor determination and NH assignment of paramagnetic proteins , 2006, Journal of biomolecular NMR.

[8]  F. Richards,et al.  NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteriation. , 1988, Biochemistry.

[9]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[10]  Ivano Bertini,et al.  Magnetic susceptibility in paramagnetic NMR , 2002 .

[11]  G. Otting,et al.  4,4'-dithiobisdipicolinic acid: a small and convenient lanthanide binding tag for protein NMR spectroscopy. , 2011, Chemistry.

[12]  V. Gaponenko,et al.  Improving the Accuracy of NMR Structures of Large Proteins Using Pseudocontact Shifts as Long-Range Restraints , 2004, Journal of biomolecular NMR.

[13]  P. Keizers,et al.  A solution model of the complex formed by adrenodoxin and adrenodoxin reductase determined by paramagnetic NMR spectroscopy. , 2010, Biochemistry.

[14]  Guido Pintacuda,et al.  NMR structure determination of protein-ligand complexes by lanthanide labeling. , 2007, Accounts of chemical research.

[15]  G. Otting,et al.  [Ln(DPA)(3)](3-) is a convenient paramagnetic shift reagent for protein NMR studies. , 2009, Journal of the American Chemical Society.

[16]  M. Piccioli,et al.  Assignment Strategy for Fast Relaxing Signals: Complete Aminoacid Identification in Thulium Substituted Calbindin D9K , 2006, Journal of biomolecular NMR.

[17]  Oliver F. Lange,et al.  Consistent blind protein structure generation from NMR chemical shift data , 2008, Proceedings of the National Academy of Sciences.

[18]  K. Ogura,et al.  Two-point anchoring of a lanthanide-binding peptide to a target protein enhances the paramagnetic anisotropic effect , 2009, Journal of biomolecular NMR.

[19]  G. Otting,et al.  3-Mercapto-2,6-pyridinedicarboxylic acid: a small lanthanide-binding tag for protein studies by NMR spectroscopy. , 2010, Chemistry.

[20]  J. Hus,et al.  De novo determination of protein structure by NMR using orientational and long-range order restraints. , 2000, Journal of molecular biology.

[21]  M. Ubbink,et al.  The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. , 1998, Structure.

[22]  I. Bertini,et al.  Paramagnetism-based versus classical constraints: An analysis of the solution structure of Ca Ln calbindin D9k , 2001, Journal of biomolecular NMR.

[23]  T. Darden,et al.  Model for the catalytic domain of the proofreading epsilon subunit of Escherichia coli DNA polymerase III based on NMR structural data. , 2002, Biochemistry.

[24]  Ad Bax,et al.  Validation of Protein Structure from Anisotropic Carbonyl Chemical Shifts in a Dilute Liquid Crystalline Phase , 1998 .

[25]  H. Gray,et al.  Pseudocontact shifts as constraints for energy minimization and molecular dynamics calculations on solution structures of paramagnetic metalloproteins , 1997, Proteins.

[26]  David Baker,et al.  Improved beta‐protein structure prediction by multilevel optimization of nonlocal strand pairings and local backbone conformation , 2006, Proteins.

[27]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[28]  P. Keizers,et al.  Paramagnetic tagging for protein structure and dynamics analysis. , 2011, Progress in nuclear magnetic resonance spectroscopy.

[29]  Thomas Szyperski,et al.  NMR Structure Determination for Larger Proteins Using Backbone-Only Data , 2010, Science.

[30]  P. Bradley,et al.  High-resolution structure prediction and the crystallographic phase problem , 2007, Nature.

[31]  H. Dyson,et al.  Assignment of the 15N NMR spectra of reduced and oxidized Escherichia coli thioredoxin , 1991, FEBS letters.

[32]  C Venclovas,et al.  Processing and analysis of CASP3 protein structure predictions , 1999, Proteins.

[33]  Andrea Giachetti,et al.  Paramagnetism-Based Restraints for Xplor-NIH , 2004, Journal of biomolecular NMR.

[34]  G. Otting,et al.  A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. , 2008, Journal of the American Chemical Society.

[35]  P. Bradley,et al.  Toward High-Resolution de Novo Structure Prediction for Small Proteins , 2005, Science.

[36]  G. Otting,et al.  Paramagnetic labelling of proteins and oligonucleotides for NMR , 2010, Journal of biomolecular NMR.

[37]  I. Bertini,et al.  Accurate solution structures of proteins from X-ray data and a minimal set of NMR data: calmodulin-peptide complexes as examples. , 2009, Journal of the American Chemical Society.

[38]  Antonio Rosato,et al.  CASD-NMR: critical assessment of automated structure determination by NMR , 2009, Nature Methods.

[39]  J. Prestegard,et al.  Structure determination of a Galectin‐3–carbohydrate complex using paramagnetism‐based NMR constraints , 2008, Protein science : a publication of the Protein Society.

[40]  G. Otting,et al.  Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts , 2008, Journal of biomolecular NMR.

[41]  David J Wilton,et al.  Pressure‐induced changes in the solution structure of the GB1 domain of protein G , 2007, Proteins.

[42]  L. Banci,et al.  NMR structures of paramagnetic metalloproteins , 2005, Quarterly Reviews of Biophysics.

[43]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[44]  C. D. Barry,et al.  Quantitative Determination of Mononucleotide Conformations in Solution using Lanthanide Ion Shift and Broadening NMR Probes , 1971, Nature.

[45]  Cristina Del Bianco,et al.  Paramagnetism-based refinement strategy for the solution structure of human alpha-parvalbumin. , 2004, Biochemistry.

[46]  C Kooperberg,et al.  Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. , 1997, Journal of molecular biology.

[47]  Ivano Bertini,et al.  Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  K. Wüthrich,et al.  PSEUDYANA for NMR structure calculation of paramagnetic metalloproteins using torsion angle molecular dynamics , 1998, Journal of biomolecular NMR.

[49]  I. Bertini,et al.  Efficiency of paramagnetism-based constraints to determine the spatial arrangement of α-helical secondary structure elements , 2002, Journal of biomolecular NMR.