Visual detection of spatial contrast; Influence of location in the visual field, target extent and illuminance level

A model is proposed that permits the prediction of contrast detection thresholds for arbitrary spatial patterns. The influence of the inhomogeneous structure of the visual field and a form of spatial integration are incorporated in the model. A hypothetical density function for the spatial sampling units, which specifies the distribution of these units with respect to both size and location, is described. The density function is compared with anatomical and electrophysiological knowledge of the density of retinal and cortical receptive fields. This density function permits a particularly lucid interpretation in terms of pattern processing. It can be considered as a system that permits simultaneous global and focal views of the surroundings. The density function, together with a schematized adaptation behaviour of single units, and an incoherent summation rule permit us to calculate a measure of the mass response, and consequently the threshold function. Predictions of the model are compared with recently obtained psychophysical data. In particular an explanation is offered for certain invariance properties of spatial contrast detection that seems to possess promising generality.

[1]  M. Pirenne,et al.  Accuracy and Sensitivity of the Human Eye , 1952, Nature.

[2]  O. Schade Optical and photoelectric analog of the eye. , 1956, Journal of the Optical Society of America.

[3]  J. Robson Spatial and Temporal Contrast-Sensitivity Functions of the Visual System , 1966 .

[4]  H U May,et al.  [Invariances in the cat's retina: principles in the relations between sensitivity, size and position of receptive fields of ganglion cells]. , 1970, Experimental brain research.

[5]  M E Wilson,et al.  Invariant features of spatial summation with changing locus in the visual field , 1970, The Journal of physiology.

[6]  D. H. Kelly Adaptation effects on spatio-temporal sine-wave thresholds. , 1972, Vision research.

[7]  B. Fischer,et al.  [Threshold, temporal summation and impulse-response function in the cat retina: temporal receptive fields of ganglion cells]. , 1972, Experimental brain research.

[8]  B. Fischer Overlap of receptive field centers and representation of the visual field in the cat's optic tract. , 1973, Vision research.

[9]  C. Enroth-Cugell,et al.  Flux, not retinal illumination, is what cat retinal ganglion cells really care about , 1973, The Journal of physiology.

[10]  S M Anstis,et al.  Letter: A chart demonstrating variations in acuity with retinal position. , 1974, Vision research.

[11]  F A Bilsen,et al.  The influence of the number of cycles upon the visual contrast threshold for spatial sine wave patterns. , 1974, Vision research.

[12]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[13]  D. H. Kelly Spatial frequency selectivity in the retina , 1975, Vision Research.

[14]  P Lennie,et al.  The control of retinal ganglion cell discharge by receptive field surrounds. , 1975, The Journal of physiology.

[15]  D. J. Sakrison,et al.  Structure and properties of a single channel in the human visual system , 1976, Vision Research.

[16]  T. A. Reichert,et al.  The absence of a measurable “critical band” at low suprathreshold contrasts , 1976, Vision Research.

[17]  L. Matin,et al.  Linked changes in spatial integration, size discrimination, and increment threshold with change in background diameter , 1976, Vision Research.

[18]  H. Wilson,et al.  Threshold visibility of frequency gradient patterns , 1977, Vision Research.

[19]  Michael A. Arbib,et al.  Computational Techniques in the Visual Segmentation of Static Scenes. , 1977 .

[20]  G. A. Hay,et al.  A model of visual threshold detection. , 1977, Journal of theoretical biology.

[21]  N. Drasdo The neural representation of visual space , 1977, Nature.

[22]  M. A. Bouman,et al.  Perimetry of contrast detection thresholds of moving spatial sine wave patterns. III. The target extent as a sensitivity controlling parameter. , 1978, Journal of the Optical Society of America.

[23]  Donatella Spinelli,et al.  Infant contrast sensitivity evaluated by evoked potentials , 1978, Brain Research.

[24]  J. J. Koenderink,et al.  Detectability of power fluctuations of temporal visual noise , 1978, Vision Research.

[25]  M. A. Bouman,et al.  Perimetry of contrast detection thresholds of moving spatial sine wave patterns. I. The near peripheral visual field (eccentricity 0 degrees-8 degrees). , 1978, Journal of the Optical Society of America.

[26]  J. Rovamo,et al.  Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision , 1978, Nature.

[27]  J J Koenderink,et al.  Perimetry of contrast detection thresholds of moving spatial sine wave patterns. IV. The influence of the mean retinal illuminance. , 1978, Journal of the Optical Society of America.

[28]  H. U. May,et al.  Invarianzen in der Katzenretina: Gesetzmä\ige beziehungen zwischen Empfindlichkeit, Größe und Lage receptiver Felder von Ganglienzellen , 2004, Experimental Brain Research.

[29]  J. J. Koenderink,et al.  The influence of the retinal inhomogeneity on the perception of spatial patterns , 1972, Kybernetik.

[30]  H. Ikeda,et al.  The development of spatial resolving power of lateral geniculate neurones in kittens , 1978, Experimental Brain Research.

[31]  J. J. Koenderink,et al.  Foveal information processing at photopic luminances , 1971, Kybernetik.

[32]  Whitman Richards Spatial remapping in the primate visual system , 2004, Kybernetik.

[33]  D. Krause,et al.  Schwellenerregung, zeitliche summation und impulsreaktionsfunktion in der retina der katze: Temporale rezeptive felder retinaler ganglienzellen , 1972, Experimental Brain Research.

[34]  E. L. Schwartz,et al.  Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception , 1977, Biological Cybernetics.