Structural choice modelling: Theory and applications to combining choice experiments

We propose and describe a comprehensive theoretical framework that integrates choice models and structural equation models. Referred to as “structural choice modelling,” the framework easily combines data from separate but related choice experiments. We describe the mathematical properties of the new framework, including goodness-of-fit and identification and we illustrate how to apply the framework with three empirical examples. The examples demonstrate new ways to evaluate choice processes and new ways to test substantive theory using choice experiments. We show how to combine choice experiments within the same model where there is a common research question, yet the designs and nature of the experiments differ. The seemingly simple notion of combining two or more choice tasks for the same people offers considerable potential to develop and test theory, as illustrated with the new framework.

[1]  K. Jöreskog A General Method for Estimating a Linear Structural Equation System. , 1970 .

[2]  Gary J. Russell,et al.  A Probabilistic Choice Model for Market Segmentation and Elasticity Structure , 1989 .

[3]  A. Goldberger,et al.  Structural Equation Models in the Social Sciences. , 1974 .

[4]  Denzil G. Fiebig,et al.  The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity , 2010, Mark. Sci..

[5]  Jordan J. Louviere,et al.  Combining sources of preference data , 1998 .

[6]  Moshe Ben-Akiva,et al.  Estimation of switching models from revealed preferences and stated intentions , 1990 .

[7]  Jordan J. Louviere,et al.  Measuring values using best‐worst scaling: The LOV example , 2007 .

[8]  Stephane Hess,et al.  Linking Response Quality to Survey Engagement: A Combined Random Scale and Latent Variable Approach , 2013 .

[9]  Jordan J. Louviere,et al.  Design and Analysis of Simulated Consumer Choice or Allocation Experiments: An Approach Based on Aggregate Data , 1983 .

[10]  D. McFadden Disaggregate Behavioral Travel Demand's RUM Side A 30-Year Retrospective , 2000 .

[11]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[12]  J. Louviere,et al.  Determining the Appropriate Response to Evidence of Public Concern: The Case of Food Safety , 1992 .

[13]  Terry Elrod,et al.  Choice Map: Inferring a Product-Market Map from Panel Data , 1988 .

[14]  Kenneth E. Train,et al.  Discrete Choice Methods with Simulation , 2016 .

[15]  Joffre Swait,et al.  Stated Choice Methods: Relaxing the IID assumption – introducing variants of the MNL model , 2000 .

[16]  Terry Elrod,et al.  A Factor-Analytic Probit Model for Representing the Market Structure in Panel Data , 1995 .

[17]  Moshe Ben-Akiva,et al.  Discrete choice models incorporating revealed preferences and psychometric data , 2002 .

[18]  Sebastián Raveau,et al.  Inclusion of latent variables in Mixed Logit models: Modelling and forecasting , 2010 .

[19]  Till Dannewald,et al.  Incorporating Latent Variables into Discrete Choice Models — A Simultaneous Estimation Approach Using SEM Software , 2008 .

[20]  Bart J. Bronnenberg,et al.  Structural Applications of the Discrete Choice Model , 2002 .

[21]  Joan L. Walker,et al.  Hybrid Choice Models: Progress and Challenges , 2002 .

[22]  R. Luce,et al.  Individual Choice Behavior: A Theoretical Analysis. , 1960 .

[23]  M. Ben-Akiva,et al.  Modeling Methods for Discrete Choice Analysis , 1997 .

[24]  Robert Kohn,et al.  Dissecting the Random Component of Utility , 2002 .

[25]  R. Duncan Luce,et al.  Individual Choice Behavior: A Theoretical Analysis , 1979 .

[26]  John M. Rose,et al.  Identifying differences in willingness to pay due to dimensionality in stated choice experiments: a cross country analysis , 2009 .

[27]  M. Keane Modeling Heterogeneity and State Dependence in Consumer Choice Behavior , 1997 .

[28]  Kalidas Ashok,et al.  Extending Discrete Choice Models to Incorporate Attitudinal and Other Latent Variables , 2002 .

[29]  Richard T. Carson,et al.  Combining Sources of Preference Data for Modeling Complex Decision Processes , 1999 .

[30]  K. Jöreskog A general method for analysis of covariance structures , 1970 .

[31]  Karl G. Jöreskog,et al.  Lisrel 8: User's Reference Guide , 1997 .

[32]  Denis Bolduc,et al.  On estimation of Hybrid Choice Models , 2009 .

[33]  Mark D. Uncles,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1987 .

[34]  D. McFadden Econometric Models for Probabilistic Choice Among Products , 1980 .

[35]  D. McFadden,et al.  MIXED MNL MODELS FOR DISCRETE RESPONSE , 2000 .