Deducing Chemical Reaction Rate Constants and Their Regions of Confidence from Noisy Measurements of Time Series of Concentration

We present a new method for estimating rate coefficients from noisy observations of concentration levels at discrete time points. Our inference method is based on a new maximum likelihood approach to the estimation of probability density function of the variations in reactant concentration. The inference procedure returns the rate coefficients with their intervals of confidence, and the variance of noise in the input data.

[1]  Darren J. Wilkinson,et al.  Bayesian inference for a discretely observed stochastic kinetic model , 2008, Stat. Comput..

[2]  Mark A. Girolami,et al.  BioBayes: A software package for Bayesian inference in systems biology , 2008, Bioinform..

[3]  M. Tomita,et al.  Reverse engineering of biochemical equations from time-course data by means of genetic programming. , 2005, Bio Systems.

[4]  Junbin Gao,et al.  Simulated maximum likelihood method for estimating kinetic rates in gene expression , 2007, Bioinform..

[5]  Paola Lecca,et al.  A new probabilistic generative model of parameter inference in biochemical networks , 2009, SAC '09.

[6]  J Timmer,et al.  Parameter estimation in stochastic biochemical reactions. , 2006, Systems biology.

[7]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[8]  Dominic Waithe,et al.  Bridging the gap between in silico and cell‐based analysis of the nuclear factor‐κB signaling pathway by in vitro studies of IKK2 , 2007, The FEBS journal.

[9]  Eberhard O Voit,et al.  Theoretical Biology and Medical Modelling Identification of Metabolic System Parameters Using Global Optimization Methods , 2022 .

[10]  Nicolas Brunel,et al.  Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference , 2007, Bioinform..

[11]  Eberhard O Voit,et al.  Theoretical Biology and Medical Modelling , 2022 .

[12]  G. Seber,et al.  Nonlinear Regression: Seber/Nonlinear Regression , 2005 .

[13]  Maria Rodriguez-Fernandez,et al.  A hybrid approach for efficient and robust parameter estimation in biochemical pathways. , 2006, Bio Systems.