Computation in Finitary Quantum Processes

We introduce quantum finite-state generators as a first step toward completing a computational description of observing individual quantum systems over time. We develop the mathematical foundations of quantum finite-state machines and compare nondeterministic and deterministic versions to stochastic generators and recognizers, summarizing their relative computational power via a hierarchy of finitary process languages. Quantum finite-state generators are explored via several physical examples, including the iterated beam splitter, the quantum kicked top, and atoms in an ion trap--a special case of which implements the Deutsch quantum algorithm. We show that the behavior of these systems, and so their information processing capacity, depends sensitively on measurement protocol.

[1]  Andrew Fraser Chaotic Data and Model Building , 1991 .

[2]  Mark Fannes,et al.  Quantum Dynamical Systems , 2001 .

[3]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[4]  P. Caines Linear Stochastic Systems , 1988 .

[5]  P. Grassberger Toward a quantitative theory of self-generated complexity , 1986 .

[6]  Yi Wang,et al.  Grammatical complexity of unimodal maps with eventually periodic kneading sequences , 1994 .

[7]  W. Moerner,et al.  Illuminating single molecules in condensed matter. , 1999, Science.

[8]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[9]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[12]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[13]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[14]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[16]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[17]  J. Crutchfield,et al.  Turbulent pattern bases for cellular automata , 1993 .

[18]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[19]  Rusins Freivalds,et al.  Quantum Finite State Transducers , 2001, SOFSEM.

[20]  J. Crutchfield,et al.  Regularities unseen, randomness observed: levels of entropy convergence. , 2001, Chaos.

[21]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[22]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[23]  Debbie W. Leung,et al.  Realization of quantum process tomography in NMR , 2000, quant-ph/0012032.

[24]  Francisco Casacuberta,et al.  Probabilistic finite-state machines - part II , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[26]  Alaa A. Kharbouch,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[27]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[28]  Francisco Casacuberta,et al.  Probabilistic finite-state machines - part I , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[30]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[31]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[32]  James P. Crutchfield,et al.  Computation at the Onset of Chaos , 1991 .

[33]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[34]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[35]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[36]  S. Weiss Fluorescence spectroscopy of single biomolecules. , 1999, Science.

[37]  James P. Crutchfield,et al.  Language Diversity of Measured Quantum Processes , 2008, Int. J. Unconv. Comput..

[38]  Milonni,et al.  Quantum logistic map. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[39]  T. Laurence,et al.  Polarization Spectroscopy of Single Fluorescent Molecules , 1999 .

[40]  A. Galindo,et al.  Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.

[41]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[42]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[43]  Auerbach,et al.  Grammatical complexity of strange sets. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[44]  R. Hochstrasser,et al.  Nonexponential kinetics of a single tRNAPhe molecule under physiological conditions. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Mark I. Dykman,et al.  Quantum computing with electrons floating on liquid helium , 1999, Science.

[46]  Richard A. Stein,et al.  Molecular Imaging: FRET Microscopy and Spectroscopy, A. Periasamy, R.N. Day (Eds.). Oxford University Press Inc. (2005), Price GB £58.00, ISBN: 0-19-517720-6 , 2006 .

[47]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[48]  N. Balazs,et al.  The Quantized Baker's Transformation , 1987 .

[49]  F. Haake,et al.  Classical and quantum chaos for a kicked top , 1987 .

[50]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[51]  B. Weiss Subshifts of finite type and sofic systems , 1973 .

[52]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[53]  R. Martinez,et al.  An algorithmic benchmark for quantum information processing , 2000, Nature.

[54]  X. Xie,et al.  Single-molecule enzymatic dynamics. , 1998, Science.

[55]  Alberto Bertoni,et al.  Analogies and di"erences between quantum and stochastic automata , 2001 .

[56]  C. Howson Theories of Probability , 1995 .

[57]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[58]  X. Zhuang,et al.  Correlating Structural Dynamics and Function in Single Ribozyme Molecules , 2002, Science.

[59]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[60]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[61]  James P. Crutchfield,et al.  Reconstructing Language Hierarchies , 1991 .

[62]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[63]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[64]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[65]  F. Haake Quantum signatures of chaos , 1991 .

[66]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[67]  S. Massar,et al.  Quantum information processing and communication , 2005 .

[68]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .