High-performance spider webs: integrating biomechanics, ecology and behaviour

Spider silks exhibit remarkable properties, surpassing most natural and synthetic materials in both strength and toughness. Orb-web spider dragline silk is the focus of intense research by material scientists attempting to mimic these naturally produced fibres. However, biomechanical research on spider silks is often removed from the context of web ecology and spider foraging behaviour. Similarly, evolutionary and ecological research on spiders rarely considers the significance of silk properties. Here, we highlight the critical need to integrate biomechanical and ecological perspectives on spider silks to generate a better understanding of (i) how silk biomechanics and web architectures interacted to influence spider web evolution along different structural pathways, and (ii) how silks function in an ecological context, which may identify novel silk applications. An integrative, mechanistic approach to understanding silk and web function, as well as the selective pressures driving their evolution, will help uncover the potential impacts of environmental change and species invasions (of both spiders and prey) on spider success. Integrating these fields will also allow us to take advantage of the remarkable properties of spider silks, expanding the range of possible silk applications from single threads to two- and three-dimensional thread networks.

[1]  H. Nakajima,et al.  Spider Silk , 2011 .

[2]  Ingi Agnarsson,et al.  Bioprospecting Finds the Toughest Biological Material: Extraordinary Silk from a Giant Riverine Orb Spider , 2010, PloS one.

[3]  Andrew T. Sensenig,et al.  Behavioural and biomaterial coevolution in spider orb webs , 2010, Journal of evolutionary biology.

[4]  Thomas Hesselberg,et al.  Ontogenetic Changes in Web Design in Two Orb‐Web Spiders , 2010 .

[5]  Markus J. Buehler,et al.  Nanostructure and molecular mechanics of spider dragline silk protein assemblies , 2010, Journal of The Royal Society Interface.

[6]  Todd A. Blackledge,et al.  Viscoelastic solids explain spider web stickiness. , 2010, Nature communications.

[7]  M. Kuntner,et al.  Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns in Nephilidae , 2010 .

[8]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[9]  W. Eberhard Recovery of spiders from the effects of parasitic wasps: implications for fine-tuned mechanisms of manipulation , 2010, Animal Behaviour.

[10]  Ko Okumura,et al.  Simple model for the mechanics of spider webs. , 2010, Physical review letters.

[11]  F. Vollrath,et al.  Nutrient balance affects foraging behaviour of a trap-building predator , 2009, Biology Letters.

[12]  Kai-Jung Chi,et al.  The effects of wind on trap structural and material properties of a sit-and-wait predator , 2009 .

[13]  Todd A Blackledge,et al.  Biomechanical variation of silk links spinning plasticity to spider web function. , 2009, Zoology.

[14]  M. Kuntner,et al.  Phylogeny accurately predicts behaviour in Indian Ocean Clitaetra spiders (Araneae : Nephilidae) , 2009 .

[15]  M. Herberstein,et al.  Taking it to extremes: what drives extreme web elongation in Australian ladder web spiders (Araneidae: Telaprocera maudae)? , 2009, Animal Behaviour.

[16]  Z. Pan,et al.  Effects of drawing speed and water on microstructure and mechanical properties of artificially spun spider dragline silk , 2009 .

[17]  Ingi Agnarsson,et al.  How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk , 2009, Journal of Experimental Biology.

[18]  B. Swanson,et al.  The evolution of complex biomaterial performance: The case of spider silk. , 2009, Integrative and comparative biology.

[19]  I. Agnarsson,et al.  Can a spider web be too sticky? Tensile mechanics constrains the evolution of capture spiral stickiness in orb‐weaving spiders , 2009 .

[20]  Thomas Scheibel,et al.  Spider silk: from soluble protein to extraordinary fiber. , 2009, Angewandte Chemie.

[21]  Jonathan A Coddington,et al.  Reconstructing web evolution and spider diversification in the molecular era , 2009, Proceedings of the National Academy of Sciences.

[22]  Markus J Buehler,et al.  Deformation and failure of protein materials in physiologically extreme conditions and disease. , 2009, Nature materials.

[23]  Aaron M. T. Harmer,et al.  Elongated orb-webs of Australian ladder-web spiders (Araneidae: Telaprocera) and the significance of orb-web elongation , 2009, Journal of Ethology.

[24]  A. Blejec,et al.  Ecology and web allometry of Clitaetra irenae, an arboricolous African orb-weaving spider (Araneae, Araneoidea, Nephilidae) , 2008 .

[25]  H. W. Levi,et al.  Web forms and the phylogeny of theridiid spiders (Araneae: Theridiidae): Chaos from order , 2008 .

[26]  T. Blackledge,et al.  The common house spider alters the material and mechanical properties of cobweb silk in response to different prey. , 2008, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[27]  Ingi Agnarsson,et al.  Spider silk aging: initial improvement in a high performance material followed by slow degradation. , 2008, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[28]  Kensuke Nakata Spiders Use Airborne Cues to Respond to Flying Insect Predators by Building Orb‐Web with Fewer Silk Thread and Larger Silk Decorations , 2008 .

[29]  J. Gosline,et al.  The role of proline in the elastic mechanism of hydrated spider silks , 2008, Journal of Experimental Biology.

[30]  Z. Shao,et al.  Elasticity of spider silks. , 2008, Biomacromolecules.

[31]  J. Coddington,et al.  Phylogeny of extant nephilid orb‐weaving spiders (Araneae, Nephilidae): testing morphological and ethological homologies , 2008 .

[32]  A Zippelius,et al.  Mechanical properties of spider dragline silk: humidity, hysteresis, and relaxation. , 2007, Biophysical journal.

[33]  F. Vollrath,et al.  The Role of Behavior in the Evolution of Spiders, Silks, and Webs , 2007 .

[34]  D. Hochuli,et al.  Habitat selection and web plasticity by the orb spider Argiope keyserlingi (Argiopidae): Do they compromise foraging success for predator avoidance? , 2007 .

[35]  Y. Kagawa,et al.  Variation of Mechanical Properties of TiO2 during Li Insertion , 2007 .

[36]  Todd A. Blackledge,et al.  Does the Giant Wood Spider Nephila pilipes Respond to Prey Variation by Altering Web or Silk Properties , 2007 .

[37]  J. Núñez‐Farfán,et al.  Patterns of variation among distinct alleles of the Flag silk gene from Nephila clavipes. , 2007, International journal of biological macromolecules.

[38]  M. L. Hendricks,et al.  Adhesive recruitment by the viscous capture threads of araneoid orb-weaving spiders , 2007, Journal of Experimental Biology.

[39]  M. S. Alam,et al.  Mechanics in naturally compliant structures , 2007 .

[40]  D. Rao,et al.  The aggregating behaviour of Argiope radon, with special reference to web decorations , 2007, Journal of Ethology.

[41]  Steven L. Miller,et al.  Molecular Orientation and Two-Component Nature of the Crystalline Fraction of Spider Dragline Silk , 2007 .

[42]  Lian Li,et al.  Design of superior spider silk: from nanostructure to mechanical properties. , 2006, Biophysical journal.

[43]  A. Summers,et al.  SPIDER DRAGLINE SILK: CORRELATED AND MOSAIC EVOLUTION IN HIGH-PERFORMANCE BIOLOGICAL MATERIALS , 2006, Evolution; international journal of organic evolution.

[44]  Joshua S Madin,et al.  Ecological consequences of major hydrodynamic disturbances on coral reefs , 2006, Nature.

[45]  J. Bond,et al.  The effects of capture spiral composition and orb-web orientation on prey interception. , 2006, Zoology.

[46]  C. Parmesan Ecological and Evolutionary Responses to Recent Climate Change , 2006 .

[47]  F. Vollrath Spider Silk: Thousands of Nano-Filaments and Dollops of Sticky Glue , 2006, Current Biology.

[48]  V. Ortuño,et al.  Oldest true orb-weaving spider (Araneae: Araneidae) , 2006, Biology Letters.

[49]  Todd A Blackledge,et al.  Unraveling the mechanical properties of composite silk threads spun by cribellate orb-weaving spiders , 2006, Journal of Experimental Biology.

[50]  B. Opell,et al.  THE FEATURES OF CAPTURE THREADS AND ORB-WEBS PRODUCED BY UNFED CYCLOSA TURBINATA (ARANEAE: ARANEIDAE) , 2006 .

[51]  K. Kohler,et al.  Molecular mechanisms of spider silk , 2006, Cellular and Molecular Life Sciences CMLS.

[52]  Todd A Blackledge,et al.  Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775) , 2006, Journal of Experimental Biology.

[53]  C. Hayashi,et al.  Silk Genes Support the Single Origin of Orb Webs , 2006, Science.

[54]  G. Plaza,et al.  Volume constancy during stretching of spider silk. , 2006, Biomacromolecules.

[55]  Todd A. Blackledge,et al.  Variation in the material properties of spider dragline silk across species , 2006 .

[56]  A. Moore,et al.  Resilient silk captures prey in black widow cobwebs , 2006 .

[57]  Musée royal de l'Afrique centrale,et al.  Spider families of the world , 2006 .

[58]  M. S. Alam,et al.  Damage Tolerance in Naturally Compliant Structures , 2005 .

[59]  Todd A Blackledge,et al.  Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus , 2005, Journal of Experimental Biology.

[60]  Adam P. Summers,et al.  Gumfooted lines in black widow cobwebs and the mechanical properties of spider capture silk. , 2005, Zoology.

[61]  Hsuan-Chen Wu,et al.  Giant wood spider Nephila pilipes alters silk protein in response to prey variation , 2005, Journal of Experimental Biology.

[62]  L. Higgins Developmental changes in barrier web structure under different levels of predation risk inNephila clavipes (Araneae: Tetragnathidae) , 1992, Journal of Insect Behavior.

[63]  F. Vollrath,et al.  Glycoprotein glue beneath a spider web's aqueous coat , 1991, Naturwissenschaften.

[64]  M. Elices,et al.  Reproducibility of the tensile properties of spider (Argiope trifasciata) silk obtained by forced silking. , 2005, Journal of experimental zoology. Part A, Comparative experimental biology.

[65]  Atushi Ushimaru,et al.  Difference in Web Construction Behavior at Newly Occupied Web Sites Between Two Cyclosa Species , 2004 .

[66]  Qing-feng Xu,et al.  Active control on molecular conformations and tensile properties of spider silk , 2004 .

[67]  Fritz Vollrath,et al.  Spider silk protein refolding is controlled by changing pH. , 2004, Biomacromolecules.

[68]  F. Ko,et al.  Modeling of mechanical properties and structural design of spider web. , 2004, Biomacromolecules.

[69]  D. Zax,et al.  Variation of mechanical properties with amino acid content in the silk of Nephila clavipes. , 2004, Biomacromolecules.

[70]  Friedrich G. Barth,et al.  Forces in the spider orb web , 1992, Journal of Comparative Physiology A.

[71]  B. Opell,et al.  van der Waals and hygroscopic forces of adhesion generated by spider capture threads , 2003, Journal of Experimental Biology.

[72]  D. Penney Does the fossil record of spiders track that of their principal prey, the insects? , 2003, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[73]  S. Zschokke Palaeontology: Spider-web silk from the Early Cretaceous , 2003, Nature.

[74]  M. Elices,et al.  Controlled supercontraction tailors the tensile behaviour of spider silk , 2003 .

[75]  H. Hansma,et al.  Molecular nanosprings in spider capture-silk threads , 2003, Nature materials.

[76]  Samuel Zschokke,et al.  Webs of theridiid spiders: construction, structure and evolution , 2003 .

[77]  Todd A. Blackledge,et al.  Are three-dimensional spider webs defensive adaptations? , 2002 .

[78]  M. Elices,et al.  The variability and interdependence of spider drag line tensile properties , 2002 .

[79]  J. Hódar,et al.  Feeding habits of the blackwidow spider Latrodectus lilianae (Araneae: Theridiidae) in an arid zone of south-east Spain , 2002 .

[80]  B. Opell HOW SPIDER ANATOMY AND THREAD CONFIGURATION SHAPE THE STICKINESS OF CRIBELLAR PREY CAPTURE THREADS , 2002 .

[81]  M. Elices,et al.  Active control of spider silk strength: comparison of drag line spun on vertical and horizontal surfaces , 2002 .

[82]  S. Zschokke Form and function of the orb-web , 2002 .

[83]  M. Elices,et al.  Tensile properties of Argiope trifasciata drag line silk obtained from the spider's web , 2001 .

[84]  F Vollrath,et al.  The effect of spinning conditions on the mechanics of a spider's dragline silk , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[85]  R. Lewis,et al.  Extreme Diversity, Conservation, and Convergence of Spider Silk Fibroin Sequences , 2001, Science.

[86]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[87]  S. Altizer Migratory behaviour and host-parasite co-evolution in natural populations of monarch butterflies infected with a protozoan parasite , 2001 .

[88]  J. Bond,et al.  Changes in the mechanical properties of capture threads and the evolution of modern orb-weaving spiders , 2001 .

[89]  N. Pierce,et al.  Evidence for diet effects on the composition of silk proteins produced by spiders. , 2000, Molecular biology and evolution.

[90]  T. Miyashita,et al.  Extraordinary web and silk properties of Cyrtarachne (Araneae, Araneidae): a possible link between orb-webs and bolas , 2000 .

[91]  Samuel Zschokke,et al.  Radius construction and structure in the orb-web of Zilla diodia (Araneidae) , 2000, Journal of Comparative Physiology A.

[92]  F Vollrath,et al.  Strength and structure of spiders' silks. , 2000, Journal of biotechnology.

[93]  William G. Eberhard,et al.  Spider manipulation by a wasp larva , 2000, Nature.

[94]  J. Bond,et al.  Capture thread extensibility of orb-weaving spiders: testing punctuated and associative explanations , 2000 .

[95]  Takeshi Watanabe,et al.  Web tuning of an orb-web spider, Octonoba sybotides, regulates prey-catching behaviour , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[96]  T. Krink,et al.  Optimal Area Use in Orb Webs of the Spider Araneus diadematus , 2000, Naturwissenschaften.

[97]  C. Krebs,et al.  Measuring the ghost of competition: Insights from density-dependent habitat selection on the co-existence and dynamics of lemmings , 2000 .

[98]  M. Elgar,et al.  Foraging strategies and feeding regimes: Web and decoration investment in Argiope keyserlingi Karsch (Araneae: Araneidae) , 2000 .

[99]  Marie E. Herberstein,et al.  Interpretations of orb-web variability: A review of past and current ideas , 2000 .

[100]  M. Herberstein,et al.  Asymmetry in spider orb webs: a result of physical constraints? , 1999, Animal Behaviour.

[101]  J. Gosline,et al.  The mechanical design of spider silks: from fibroin sequence to mechanical function. , 1999, The Journal of experimental biology.

[102]  M. Herberstein,et al.  The role of experience in web-building spiders (Araneidae) , 1999, Animal Cognition.

[103]  Z. Shao,et al.  Heterogeneous morphology of Nephila edulis spider silk and its significance for mechanical properties , 1999 .

[104]  Kensuke Nakata,et al.  Feeding experience affects web relocation and investment in web threads in an orb-web spider, Cyclosa argenteoalba , 1999, Animal Behaviour.

[105]  R. Lewis,et al.  Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. , 1999, International journal of biological macromolecules.

[106]  F Vollrath,et al.  Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual. , 1999, International journal of biological macromolecules.

[107]  B. Opell,et al.  Redesigning spider webs: Stickiness, capture area and the evolution of modern orb-webs , 1999 .

[108]  B. Opell,et al.  Economics of spider orb-webs: the benefits of producing adhesive capture thread and of recycling silk , 1998 .

[109]  J. Coddington,et al.  Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea) , 1998 .

[110]  J. Bond,et al.  TESTING ADAPTIVE RADIATION AND KEY INNOVATION HYPOTHESES IN SPIDERS , 1998, Evolution; international journal of organic evolution.

[111]  R. Lewis,et al.  Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. , 1998, Journal of molecular biology.

[112]  M. Herberstein,et al.  THE WEB OF NUCTENEA SCLOPETARIA (ARANEAE, ARANEIDAE) : RELATIONSHIP BETWEEN BODY SIZE AND WEB DESIGN , 1998 .

[113]  B. Opell,et al.  The material cost and stickiness of capture threads and the evolution of orb‐weaving spiders , 1997 .

[114]  Fritz Vollrath,et al.  Design Variability in Web Geometry of an Orb-Weaving Spider , 1997, Physiology & Behavior.

[115]  D. Brent A COMPARISON OF CAPTURE THREAD AND ARCHITECTURAL FEATURES O F DEINOPOID AND ARANEOID ORB-WEB S , 1997 .

[116]  Samuel Zschokke Factors influencing the size of the orb web in Araneus diadematus , 1997 .

[117]  F. Vollrath,et al.  Mechanics of silk produced by loaded spiders , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[118]  Fritz Vollrath,et al.  Unfreezing the behaviour of two orb spiders , 1995, Physiology & Behavior.

[119]  F. Vollrath,et al.  Thread biomechanics in the two orb-weaving spiders Araneus diadematus(Araneae, Araneidae)and Uloborus walckenaerius(Araneae, Uloboridae) , 1995 .

[120]  Fritz Vollrath,et al.  Structural engineering of an orb-spider's web , 1995, Nature.

[121]  Y. Termonia Molecular modeling of spider silk elasticity , 1994 .

[122]  C. P. Sandoval,et al.  Plasticity in web design in the spider Parawixia bistriata : a response to variable prey type , 1994 .

[123]  L. Jelinski,et al.  Solid-State 13C NMR of Nephila clavipes Dragline Silk Establishes Structure and Identity of Crystalline Regions , 1994 .

[124]  P. Sherman The orb-web: an energetic and behavioural estimator of a spider's dynamic foraging and reproductive strategies , 1994, Animal Behaviour.

[125]  B. Opell Increased stickiness of prey capture threads accompanying web reduction in the spider family Uloboridae , 1994 .

[126]  K. Yeargan BIOLOGY OF BOLAS SPIDERS , 1994 .

[127]  D. Wise Spiders in Ecological Webs , 1993 .

[128]  R. Buskirk,et al.  A trap-building predator exhibits different tactics for different aspects of foraging behaviour , 1992, Animal Behaviour.

[129]  H. W. Levi,et al.  Systematics and Evolution of Spiders (Araneae) , 1991 .

[130]  William G. Eberhard,et al.  Function and Phylogeny of Spider Webs , 1990 .

[131]  Paul A. Selden,et al.  Orb-web weaving spiders in the early Cretaceous , 1989, Nature.

[132]  Fritz Vollrath,et al.  Modulation of the mechanical properties of spider silk by coating with water , 1989, Nature.

[133]  B. Hazlett Behavioural Plasticity as an Adaptation to a Variable Environment , 1988 .

[134]  W. Eberhard BEHAVIORAL FLEXIBILITY IN ORB WEB CONSTRUCTION: EFFECTS OF SUPPLIES IN DIFFERENT SILK GLANDS AND SPIDER SIZE AND WEIGHT , 1988 .

[135]  C. Craig,et al.  The ecological and evolutionary interdependence between web architecture and web silk spun by orb web weaving spiders , 1987 .

[136]  C. Craig,et al.  The Significance of Spider Size to the Diversification of Spider-Web Architectures and Spider Reproductive Modes , 1987, The American Naturalist.

[137]  M. Denny,et al.  The structure and properties of spider silk , 1986 .

[138]  R. Foelix,et al.  The biology of spiders. , 1987 .

[139]  W. Eberhard,et al.  Factors affecting numbers and kinds of prey caught in artificial spider webs, with considerations of how orb webs trap prey , 1980 .

[140]  A. R. Palmer FISH PREDATION AND THE EVOLUTION OF GASTROPOD SHELL SCULPTURE: EXPERIMENTAL AND GEOGRAPHIC EVIDENCE , 1979, Evolution; international journal of organic evolution.

[141]  Y. Lubin,et al.  Webs of Miagrammopes (Araneae: Uloboridae) in the Neotropics , 1978 .

[142]  Mark K. Stowe,et al.  OBSERVATIONS OF TWO NOCTURNAL ORBWEAVERS THA T BUILD SPECIALIZED WEBS : SCOLODER US CORDATU S AND WIXIA ECTYPA (ARANEAE :ARANEIDAE ) , 1978 .

[143]  Mark W. Denny,et al.  THE PHYSICAL PROPERTIES OF SPIDER'S SILK AND THEIR ROLE IN THE DESIGN OF ORB-WEBS , 1976 .

[144]  P N Witt,et al.  The energy budget of an orb web-building spider. , 1976, Comparative biochemistry and physiology. A, Comparative physiology.

[145]  W. Eberhard The ‘inverted ladder’ orb web of Scoloderus sp. and the intermediate orb of Eustala (?) sp. Araneae: Araneidae , 1975 .