Mott-transition-based RRAM

[1]  I. Kang,et al.  Flexible Crossbar‐Structured Phase Change Memory Array via Mo‐Based Interfacial Physical Lift‐Off , 2018, Advanced Functional Materials.

[2]  R. Waser,et al.  Forming-free Mott-oxide threshold selector nanodevice showing s-type NDR with high endurance (> 1012 cycles), excellent Vth stability (5%), fast (< 10 ns) switching, and promising scaling properties , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[3]  Benoit Corraze,et al.  Mott insulators: A large class of materials for Leaky Integrate and Fire (LIF) artificial neuron , 2018, Journal of Applied Physics.

[4]  Takashi Eshita,et al.  Development of highly reliable ferroelectric random access memory and its Internet of Things applications , 2018, Japanese Journal of Applied Physics.

[5]  Bilge Yildiz,et al.  Strongly correlated perovskite lithium ion shuttles , 2018, Proceedings of the National Academy of Sciences.

[6]  Robert M. White,et al.  Two-terminal spin–orbit torque magnetoresistive random access memory , 2018, Nature Electronics.

[7]  B. Diény,et al.  A highly thermally stable sub-20 nm magnetic random-access memory based on perpendicular shape anisotropy. , 2018, Nanoscale.

[8]  Dirk Wouters,et al.  Different threshold and bipolar resistive switching mechanisms in reactively sputtered amorphous undoped and Cr-doped vanadium oxide thin films , 2018 .

[9]  Shinhyun Choi,et al.  SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations , 2018, Nature Materials.

[10]  Hua Zhou,et al.  Perovskite nickelates as electric-field sensors in salt water , 2017, Nature.

[11]  Wei Lu,et al.  The future of electronics based on memristive systems , 2018, Nature Electronics.

[12]  Peng Lin,et al.  Fully memristive neural networks for pattern classification with unsupervised learning , 2018 .

[13]  Huaqiang Wu,et al.  An artificial nociceptor based on a diffusive memristor , 2018, Nature Communications.

[14]  Rainer Waser,et al.  Spectroscopic Indications of Tunnel Barrier Charging as the Switching Mechanism in Memristive Devices , 2017 .

[15]  John Paul Strachan,et al.  Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing , 2017, Nature.

[16]  U. Ganguly,et al.  Memory Performance of a Simple Pr0.7Ca0.3MnO3-Based Selectorless RRAM , 2017, IEEE Transactions on Electron Devices.

[17]  S. Datta,et al.  Ultra-low power probabilistic IMT neurons for stochastic sampling machines , 2017, 2017 Symposium on VLSI Circuits.

[18]  M. Rozenberg,et al.  A Leaky‐Integrate‐and‐Fire Neuron Analog Realized with a Mott Insulator , 2017 .

[19]  H. Hwang,et al.  In situ TEM observation on the interface-type resistive switching by electrochemical redox reactions at a TiN/PCMO interface. , 2017, Nanoscale.

[20]  J. Yang,et al.  Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. , 2017, Nature materials.

[21]  Yao-Feng Chang,et al.  Proton exchange reactions in SiOx-based resistive switching memory: Review and insights from impedance spectroscopy , 2016 .

[22]  Manuel Le Gallo,et al.  Stochastic phase-change neurons. , 2016, Nature nanotechnology.

[23]  G. Yeom,et al.  Chemical and structural effects of lanthanide trivalent cation in Ln0.7Sr0.3MnO3 (Ln=Pr and Sm) perovskite manganite on the resistive switching characteristic , 2016 .

[24]  R. Waser,et al.  Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications , 2016 .

[25]  L. Malavasi,et al.  Percolative metal-insulator transition in LaMnO 3 , 2015, 1507.06592.

[26]  Y. Ueda,et al.  Pressure-Induced Mott Transition Followed by a 24-K Superconducting Phase in BaFe_{2}S_{3}. , 2015, Physical review letters.

[27]  Tae Hyung Park,et al.  Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell , 2015, Scientific Reports.

[28]  Benoit Corraze,et al.  Resistive Switching in Mott Insulators and Correlated Systems , 2015 .

[29]  You Zhou,et al.  Mott Memory and Neuromorphic Devices , 2015, Proceedings of the IEEE.

[30]  Hyung‐Ho Park,et al.  Manganite based hetero-junction structure of La0.7Sr0.7−xCaxMnO3 and CaMnO3−δ for cross-point arrays , 2015, Nanotechnology.

[31]  T. Cain,et al.  Metal–insulator transitions in epitaxial Gd1 − xSrxTiO3 thin films grown using hybrid molecular beam epitaxy , 2015 .

[32]  M. Rozenberg,et al.  Manganite-based memristive heterojunction with tunable non-linear I-V characteristics. , 2015, Nanoscale.

[33]  H. Oike,et al.  Pressure-induced Mott transition in an organic superconductor with a finite doping level. , 2015, Physical review letters.

[34]  V. Shutthanandan,et al.  Hole-induced insulator-to-metal transition in L a 1 -x S r x Cr O 3 epitaxial films , 2015, 1502.01404.

[35]  Y. Tokura,et al.  X-ray study of metal-insulator transitions induced by W doping and photoirradiation in VO 2 films , 2015 .

[36]  Benoit Corraze,et al.  Control of resistive switching in AM4Q8 narrow gap Mott insulators: A first step towards neuromorphic applications , 2015 .

[37]  S. Maikap,et al.  Impact of device size and thickness of Al2O3 film on the Cu pillar and resistive switching characteristics for 3D cross-point memory application , 2014, Nanoscale Research Letters.

[38]  John D. Budai,et al.  Metallization of vanadium dioxide driven by large phonon entropy , 2014, Nature.

[39]  Jian Shi,et al.  Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping , 2014, Nature Communications.

[40]  F. Zeng,et al.  Recent progress in resistive random access memories: Materials, switching mechanisms, and performance , 2014 .

[41]  M. Rozenberg,et al.  First-order insulator-to-metal Mott transition in the paramagnetic 3D system GaTa4Se8. , 2014, Physical review letters.

[42]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[43]  Chao Zhang,et al.  Resistance uniformity of TiO2 memristor with different thin film thickness , 2014, 14th IEEE International Conference on Nanotechnology.

[44]  Jin-Hyung Park,et al.  Unravelling the switching mechanisms in electric field induced insulator–metal transitions in VO2 nanobeams , 2014 .

[45]  H. C. Jung,et al.  NbO2-based low power and cost effective 1S1R switching for high density cross point ReRAM Application , 2014, Symposium on VLSI Technology.

[46]  Hyung‐Ho Park,et al.  Effect of La3+ substitution with Gd3+ on the resistive switching properties of La0.7Sr0.3MnO3 thin films , 2014 .

[47]  Stephan Menzel,et al.  Spectroscopic Proof of the Correlation between Redox‐State and Charge‐Carrier Transport at the Interface of Resistively Switching Ti/PCMO Devices , 2014, Advanced materials.

[48]  D. Feng,et al.  Direct Observation of the Bandwidth Control Mott Transition in the NiS 2-x Se x Multiband System , 2013, 1307.5941.

[49]  P. Xiang,et al.  Strain controlled metal-insulator transition in epitaxial NdNiO3 thin films , 2013 .

[50]  Byoung Hun Lee,et al.  Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device , 2013, Nanotechnology.

[51]  V. Gopalan,et al.  Structural and electronic recovery pathways of a photoexcited ultrathin VO 2 film , 2013, 1309.5102.

[52]  Shimeng Yu,et al.  Synaptic electronics: materials, devices and applications , 2013, Nanotechnology.

[53]  T. Cren,et al.  Resistive switching at the nanoscale in the Mott insulator compound GaTa4Se8. , 2013, Nano letters.

[54]  Marcelo Rozenberg,et al.  Universal Electric‐Field‐Driven Resistive Transition in Narrow‐Gap Mott Insulators , 2013, Advanced materials.

[55]  M. Rozenberg,et al.  A new route to the Mott-Hubbard metal-insulator transition: Strong correlations effects in Pr0.7Ca0.3MnO3 , 2013, Scientific Reports.

[56]  M. Rozenberg,et al.  Resistive switching induced by electronic avalanche breakdown in GaTa$_4$Se$_{8-x}$Te$_x$ narrow gap Mott Insulators , 2013, 1304.4749.

[57]  M. Pickett,et al.  A scalable neuristor built with Mott memristors. , 2013, Nature materials.

[58]  L. Cario,et al.  Optical conductivity measurements of GaTa4Se8 under high pressure: evidence of a bandwidth-controlled insulator-to-metal Mott transition. , 2013, Physical review letters.

[59]  S. Ramanathan,et al.  Voltage-Triggered Ultrafast Phase Transition in Vanadium Dioxide Switches , 2013, IEEE Electron Device Letters.

[60]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[61]  H. Kim,et al.  RRAM-based synapse for neuromorphic system with pattern recognition function , 2012, 2012 International Electron Devices Meeting.

[62]  Zhaoliang Liao,et al.  Evidence for electric-field-driven migration and diffusion of oxygen vacancies in Pr0.7Ca0.3MnO3 , 2012 .

[63]  R Stanley Williams,et al.  Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices , 2012, Nanotechnology.

[64]  Hidekazu Tanaka,et al.  Filling-controlled Mott transition in W-doped VO2 , 2012 .

[65]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[66]  N. Ohta,et al.  Insulator-metal transitions induced by electric field and photoirradiation in organic Mott insulator deuterated κ-(BEDT-TTF)2Cu[N(CN)2]Br. , 2012, Journal of the American Chemical Society.

[67]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[68]  Byung Joon Choi,et al.  Engineering nonlinearity into memristors for passive crossbar applications , 2012 .

[69]  S. Nakatsuji,et al.  Pressure-tuned insulator to metal transition in eu2ir2o7 , 2011, 1107.2544.

[70]  Hiroshi Ishiwara,et al.  Ferroelectric random access memories. , 2012, Journal of nanoscience and nanotechnology.

[71]  D. Ielmini,et al.  Phase change materials in non-volatile storage , 2011 .

[72]  Xiao-ming Wang,et al.  Transport and Magnetic Properties in the Gd1-xCaxVO3 System , 2011 .

[73]  K. Tsukagoshi,et al.  Electric-field-induced Mott transition in an organic molecular crystal , 2011 .

[74]  X. Bai,et al.  Electroforming and endurance behavior of Al/Pr0.7Ca0.3MnO3/Pt devices , 2011 .

[75]  Masaharu Oshima,et al.  Formation of transition layers at metal/perovskite oxide interfaces showing resistive switching behaviors , 2011 .

[76]  I-Wei Chen,et al.  A size-dependent nanoscale metal-insulator transition in random materials. , 2011, Nature nanotechnology.

[77]  J. Wu,et al.  Room temperature photo-induced phase transitions of VO2 nanodevices , 2011 .

[78]  Sang Chul Lee,et al.  Nonvolatile resistive switching in Pr0.7Ca0.3MnO3 devices using multilayer graphene electrodes , 2011 .

[79]  L. Cario,et al.  Electric‐Field‐Induced Resistive Switching in a Family of Mott Insulators: Towards a New Class of RRAM Memories , 2010, Advanced materials.

[80]  M Marsi,et al.  A microscopic view on the Mott transition in chromium-doped V(2)O(3). , 2010, Nature communications.

[81]  I. Ohkubo,et al.  Interfacial chemical states of resistance-switching metal/Pr0.7Ca0.3MnO3 interfaces , 2010 .

[82]  Frederick T. Chen,et al.  Formation and instability of silver nanofilament in Ag-based programmable metallization cells. , 2010, ACS nano.

[83]  B. Yildiz,et al.  Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain? , 2010 .

[84]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[85]  F. Lechermann,et al.  Nature of the Mott transition in Ca2RuO4. , 2010, Physical review letters.

[86]  A Tanaka,et al.  Inequivalent routes across the Mott transition in V2O3 explored by X-ray absorption. , 2010, Physical review letters.

[87]  H. Hwang,et al.  Effect of oxygen migration and interface engineering on resistance switching behavior of reactive metal/polycrystalline Pr0.7Ca0.3MnO3 device for nonvolatile memory applications , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[88]  Gang Cao,et al.  Temperature dependence of the electronic structure of the J eff =(1)/(2) Mott insulator Sr 2 IrO 4 studied by optical spectroscopy , 2009 .

[89]  Shixiong Zhang,et al.  Direct correlation of structural domain formation with the metal insulator transition in a VO2 nanobeam. , 2009, Nano letters.

[90]  Docheon Ahn,et al.  Surface-stress-induced Mott transition and nature of associated spatial phase transition in single crystalline VO2 nanowires. , 2009, Nano letters.

[91]  O. Chauvet,et al.  Electric Pulse Induced Resistive Switching, Electronic Phase Separation, and Possible Superconductivity in a Mott insulator , 2009, 0909.1978.

[92]  Xiaomin Li,et al.  The polarity origin of the bipolar resistance switching behaviors in metal/La0.7Ca0.3MnO3/Pt junctions , 2009 .

[93]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[94]  H. Hwang,et al.  The impact of Al interfacial layer on resistive switching of La0.7Sr0.3MnO3 for reliable ReRAM applications , 2009 .

[95]  X. Bai,et al.  Categorization of resistive switching of metal-Pr0.7Ca0.3MnO3-metal devices , 2009 .

[96]  D. Natelson,et al.  Origin of hysteresis in resistive switching in magnetite is Joule heating , 2009, 0905.3510.

[97]  D. Cobden,et al.  New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams. , 2009, Nature nanotechnology.

[98]  Dashan Shang,et al.  Resistive switching properties in oxygen-deficient Pr0.7Ca0.3MnO3 junctions with active Al top electrodes , 2009 .

[99]  D. Ielmini,et al.  Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices , 2009, IEEE Transactions on Electron Devices.

[100]  M. Gomi,et al.  Enhancement of Switching Capability on Bipolar Resistance Switching Device with Ta/Pr0.7Ca0.3MnO3/Pt Structure , 2008 .

[101]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[102]  H. Hwang,et al.  Uniform resistive switching with a thin reactive metal interface layer in metal-La0.7Ca0.3MnO3-metal heterostructures , 2008 .

[103]  M. Gomi,et al.  Origin of Negative Differential Resistance Observed on Bipolar Resistance Switching Device with Ti/Pr0.7Ca0.3MnO3/Pt Structure , 2008 .

[104]  M. Sage,et al.  Insulator-to-metal transition in (R,Ca)VO(3) , 2008 .

[105]  G. I. Meijer,et al.  Who Wins the Nonvolatile Memory Race? , 2008, Science.

[106]  Byung-Gyu Chae,et al.  Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging , 2007, Science.

[107]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[108]  T. Hasegawa,et al.  Electronic transport in Ta2O5 resistive switch , 2007 .

[109]  C. J. Kim,et al.  Effect of top electrode on resistance switching of (Pr, Ca)MnO3 thin films , 2006 .

[110]  J. Allen,et al.  Photoemission study of (V$_{1-x}$M$_x$)$_2$O$_3$ (M=Cr, Ti) , 2006, cond-mat/0608380.

[111]  D. Johrendt,et al.  Crystal structures, electronic properties, and pressure-induced superconductivity of the tetrahedral cluster compounds GaNb(4)S(8), GaNb(4)Se(8), and GaTa(4)Se(8). , 2005, Journal of the American Chemical Society.

[112]  R. Scalettar,et al.  First-order isostructural Mott transition in highly compressed MnO. , 2005, Physical review letters.

[113]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[114]  A. Sawa,et al.  Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface , 2004, cond-mat/0409657.

[115]  D. Khomskii,et al.  Transition from Mott insulator to superconductor in GaNb4Se8 and GaTa4Se8 under high pressure. , 2004, Physical review letters.

[116]  P.Limelette,et al.  Universality and Critical Behavior at the Mott transition , 2004, cond-mat/0406351.

[117]  A. Georges,et al.  Spectroscopic signatures of a bandwidth-controlled Mott transition at the surface of 1T-TaSe2. , 2002, Physical review letters.

[118]  O. Cépas,et al.  Electric-field-induced Mott insulating states in organic field-effect transistors , 2002, cond-mat/0210565.

[119]  V. Eyert The metal-insulator transition of NbO2: An embedded Peierls instability , 2001, cond-mat/0106137.

[120]  Y. Tokura,et al.  Dielectric breakdown of one-dimensional Mott insulators Sr 2 CuO 3 and SrCuO 2 , 2000 .

[121]  M. Inaba,et al.  Metal–Insulator Transition and Crystal Structure of La1−xSrxCoO3as Functions of Sr-Content, Temperature, and Oxygen Partial Pressure☆ , 1999 .

[122]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[123]  H. Sohn,et al.  EVIDENCE FOR O2P HOLE-DRIVEN CONDUCTIVITY IN LA1-XSRXMNO3 (0 X 0.7) AND LA0.7SR0.3MNOZ THIN FILMS , 1997 .

[124]  Y. Tokura,et al.  Transport and magnetic properties of a Mott-Hubbard system whose bandwidth and band filling are both controllable: R1-xCaxTiO3+y/2 , 1997 .

[125]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[126]  Sánchez,et al.  Metal-insulator transition in oxygen-deficient LaNiO3-x perovskites. , 1996, Physical review. B, Condensed matter.

[127]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[128]  Okada,et al.  Optical spectra in (La,Y)TiO3: Variation of Mott-Hubbard gap features with change of electron correlation and band filling. , 1995, Physical review. B, Condensed matter.

[129]  R. Saraf,et al.  Growth of Thin Films of the Defect Perovskite LaCuO3-δ by Pulsed Laser Deposition , 1994 .

[130]  Okada,et al.  Doping- and pressure-induced change of electrical and magnetic properties in the Mott-Hubbard insulator LaTiO3. , 1993, Physical review. B, Condensed matter.

[131]  McGuire,et al.  Structure and properties of the LaCuO3- delta perovskites. , 1993, Physical review. B, Condensed matter.

[132]  Rupp,et al.  Extraordinary pressure dependence of the metal-to-insulator transition in the charge-transfer compounds NdNiO3 and PrNiO3. , 1993, Physical review. B, Condensed matter.

[133]  Nazzal,et al.  Pressure dependence of the metal-insulator transition in the charge-transfer oxides RNiO3 (R=Pr,Nd,Nd0.7La0.3). , 1993, Physical review. B, Condensed matter.

[134]  Nazzal,et al.  Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap. , 1992, Physical review. B, Condensed matter.

[135]  J. P. Remeika,et al.  Metal-Insulator Transitions in Pure and Doped V 2 O 3 , 1973 .

[136]  J. P. Remeika,et al.  Critical Behavior of the Mott Transition in Cr-Doped V 2 O 3 , 1970 .

[137]  J. P. Remeika,et al.  Mott Transition in Cr-DopedV2O3 , 1969 .

[138]  Nevill Mott,et al.  The transition to the metallic state , 1961 .

[139]  Nevill Mott,et al.  ON THE TRANSITION TO METALLIC CONDUCTION IN SEMICONDUCTORS , 1956 .

[140]  N F Mott,et al.  The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals , 1949 .

[141]  E. Verwey,et al.  Semi-conductors with partially and with completely filled3d-lattice bands , 1937 .

[142]  A. Wilson,et al.  The Theory of Electronic Semi-Conductors , 1931 .

[143]  H. Bethe Theorie der Beugung von Elektronen an Kristallen , 1928 .