Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device

Abstract Left ventricular assist devices (LVADs) are continuous flow pumps that are employed in patients with severe heart failure. Although their emergence has significantly improved therapeutic options for patients with heart failure, detailed studies of the impact of LVADs on hemodynamics are notably lacking. To this end we initiate a computational study of the Jarvik 2000 LVAD model employing isogeometric fluid–structure interaction analysis. We focus on a patient-specific configuration in which the LVAD is implanted in the descending thoracic aorta. We perform computations for three pump settings and report our observations for several quantities of hemodynamic interest. It should be noted that this paper presents the first three-dimensional, patient-specific fluid–structure interaction simulation of LVADs.

[1]  D. Ku,et al.  Fluid mechanics of vascular systems, diseases, and thrombosis. , 1999, Annual review of biomedical engineering.

[2]  T. Hughes,et al.  Effect of exercise on hemodynamic conditions in the abdominal aorta. , 1999, Journal of vascular surgery.

[3]  Jeffrey R. Gohean A closed-loop multi-scale model of the cardiovascular system for evaluation of ventricular assist devices , 2007 .

[4]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[5]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics , 2007 .

[6]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[7]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  D. Peric,et al.  A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .

[10]  Mette S. Olufsen,et al.  Modeling the arterial system with reference to an anesthesia simulator , 1998 .

[11]  R M Nerem,et al.  The elongation and orientation of cultured endothelial cells in response to shear stress. , 1985, Journal of biomechanical engineering.

[12]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[13]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[14]  Thomas J. R. Hughes,et al.  Finite element modeling of blood flow in arteries , 1998 .

[15]  K. May-Newman,et al.  Effect of LVAD outflow conduit insertion angle on flow through the native aorta , 2004, Journal of medical engineering & technology.

[16]  M S Olufsen,et al.  A one-dimensional fluid dynamic model of the systemic arteries. , 2000, Studies in health technology and informatics.

[17]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[18]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[19]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[20]  P. Gould Introduction to Linear Elasticity , 1983 .

[21]  Charles A. Taylor,et al.  Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries , 2006 .

[22]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[23]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[24]  Y. Yoshida,et al.  Junction complexes of endothelial cells in atherosclerosis-prone and atherosclerosis-resistant regions on flow dividers of brachiocephalic bifurcations in the rabbit aorta. , 1994, Biorheology.

[25]  A. Shaaban,et al.  Wall shear stress and early atherosclerosis: a review. , 2000, AJR. American journal of roentgenology.

[26]  Charles A. Taylor,et al.  A coupled momentum method for modeling blood flow in three-dimensional deformable arteries , 2006 .

[27]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[28]  Guang-Zhong Yang,et al.  Helical and Retrograde Secondary Flow Patterns in the Aortic Arch Studied by Three‐Directional Magnetic Resonance Velocity Mapping , 1993, Circulation.

[29]  D. Ku,et al.  Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. , 1988, Archives of pathology & laboratory medicine.

[30]  S. Mittal,et al.  Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations , 1992 .

[31]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[32]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[33]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[34]  Tayfun E. Tezduyar,et al.  Automatic mesh update with the solid-extension mesh moving technique , 2004 .

[35]  Thomas J. R. Hughes,et al.  A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems , 1997 .

[36]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[37]  L. Formaggia,et al.  Stability analysis of second-order time accurate schemes for ALE-FEM , 2004 .

[38]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[39]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[40]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[41]  Thomas J. R. Hughes,et al.  Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis , 2004, Annals of Biomedical Engineering.

[42]  R. Hetzer,et al.  [Heart assist systems--current status]. , 2002, Herz.

[43]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[44]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[45]  R M Nerem,et al.  Correlation of Endothelial Cell Shape and Wall Shear Stress in a Stenosed Dog Aorta , 1986, Arteriosclerosis.

[46]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[47]  Thomas J. R. Hughes,et al.  On the one-dimensional theory of blood flow in the larger vessels , 1973 .

[48]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics (Int. J. Numer. Meth. Fluids (in press) (DOI:10.1002/fld.1443)) , 2007 .

[49]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[50]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[51]  J. Goldman,et al.  Control of the shape of a thrombus-neointima-like structure by blood shear stress. , 2002, Journal of biomechanical engineering.

[52]  Charbel Farhat,et al.  The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .

[53]  R. Hetzer,et al.  Kardiale Assist-Systeme – Gegenwärtiger Stand , 2002, Herz.

[54]  R Pietrabissa,et al.  Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. , 2002, Biorheology.

[55]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[56]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .