Quaternion Neural-Network-Based PolSAR Land Classification in Poincare-Sphere-Parameter Space

We propose a quaternion neural-network-based land classification in Poincare-sphere-parameter space. By representing the Stokes vector on/in the Poincare sphere geometrically, we construct two analysis parameters, namely, the position vector and the variation vector, to describe the feature of a pixel in test area. Then, by employing a quaternion feedforward neural network, we generate successful classification results for detecting lake, grass, forest, and town areas. In comparison with the conventional C-matrix-based methods, the proposed method has higher classification performance, especially in detecting forest and town areas. Moreover, the classification result of the proposed method is not influenced by height information. This fact suggests that the proposed classification method can be used for complicated terrains.

[1]  Fabio Del Frate,et al.  Neural networks for oil spill detection using ERS-SAR data , 2000, IEEE Trans. Geosci. Remote. Sens..

[2]  Akira Hirose,et al.  Complex-Valued Neural Networks , 2006, Studies in Computational Intelligence.

[3]  M. Hellmann,et al.  Classification of full polarimetric SAR-data using artificial neural networks and fuzzy algorithms , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[4]  Akira Hirose,et al.  Circular property of complex-valued correlation learning in CMRF-based filtering for synthetic aperture radar interferometry , 2014, Neurocomputing.

[5]  R. Keith Raney,et al.  On the use of permanent symmetric scatterers for ship characterization , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Marc Acheroy,et al.  Fusion of PolSAR and PolInSAR data for land cover classification , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[7]  D. Evans,et al.  Radar polarimetry: analysis tools and applications , 1988 .

[8]  Juan J. Flores,et al.  The application of artificial neural networks to the analysis of remotely sensed data , 2008 .

[9]  Akira Hirose,et al.  Singular Unit Restoration in Interferograms Based on Complex-Valued Markov Random Field Model for Phase Unwrapping , 2009, IEEE Geoscience and Remote Sensing Letters.

[10]  Paul M. Mather,et al.  The use of backpropagating artificial neural networks in land cover classification , 2003 .

[11]  Hiroyoshi Yamada,et al.  Four-Component Scattering Power Decomposition With Rotation of Coherency Matrix , 2011, IEEE Trans. Geosci. Remote. Sens..

[12]  Akira Hirose,et al.  Use of Poincare sphere parameters for fast supervised PolSAR land classification , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[13]  Irena Hajnsek,et al.  A Review of Polarimetric SAR Algorithms and their Applications , 2004 .

[14]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[15]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[16]  Akira Hirose,et al.  Polarimetric-basis transformation for land classification in PolInSAR , 2013 .

[17]  Thomas L. Ainsworth,et al.  Unsupervised classification of polarimetric synthetic aperture Radar images using fuzzy clustering and EM clustering , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Akira Hirose,et al.  Adaptive noise reduction of InSAR images based on a complex-valued MRF model and its application t o phase unwrapping problem , 2002, IEEE Trans. Geosci. Remote. Sens..

[19]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[20]  Y. Yamaguchi,et al.  CS-1-4 Four-Component Scattering Model for Polarimetric SAR Image Decomposition based on Covariance Matrix(CS-1. 電磁波計測・イメージングと波動情報処理技術, エレクトロニクス1) , 2005 .

[21]  Akira Hirose,et al.  Generalization Characteristics of Complex-Valued Feedforward Neural Networks in Relation to Signal Coherence , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[22]  Akira Hirose,et al.  Plastic mine detecting radar system using complex-valued self-organizing map that deals with multiple-frequency interferometric images , 2004, Neural Networks.

[23]  Nobuyuki Matsui,et al.  Quaternion neural network with geometrical operators , 2004, J. Intell. Fuzzy Syst..

[24]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[25]  Jean-Yves Tourneret,et al.  Ship and Oil-Spill Detection Using the Degree of Polarization in Linear and Hybrid/Compact Dual-Pol SAR , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[26]  Jong-Sen Lee,et al.  The use of fully polarimetric information for the fuzzy neural classification of SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[27]  Akira Hirose,et al.  PolSAR land classification by using quaternion-valued neural networks , 2013, Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).

[28]  Kun-Shan Chen,et al.  Classification of multifrequency polarimetric SAR imagery using a dynamic learning neural network , 1996, IEEE Trans. Geosci. Remote. Sens..

[29]  Jong-Sen Lee,et al.  Fuzzy classification of earth terrain covers using complex polarimetric SAR data , 1996 .

[30]  Thuy Le Toan,et al.  Polarimetric discriminators for SAR images , 1992, IEEE Trans. Geosci. Remote. Sens..

[31]  Sang-Eun Park,et al.  Unsupervised Classification of Scattering Mechanisms in Polarimetric SAR Data Using Fuzzy Logic in Entropy and Alpha Plane , 2007, IEEE Transactions on Geoscience and Remote Sensing.