Solvent-Free Method for Defect Reduction and Improved Performance of p-i-n Vapor-Deposited Perovskite Solar Cells

As perovskite-based photovoltaics near commercialization, it is imperative to develop industrial-scale defect-passivation techniques. Vapor deposition is a solvent-free fabrication technique that is widely implemented in industry and can be used to fabricate metal-halide perovskite thin films. We demonstrate markably improved growth and optoelectronic properties for vapor-deposited [CH(NH2)2]0.83Cs0.17PbI3 perovskite solar cells by partially substituting PbI2 for PbCl2 as the inorganic precursor. We find the partial substitution of PbI2 for PbCl2 enhances photoluminescence lifetimes from 5.6 ns to over 100 ns, photoluminescence quantum yields by more than an order of magnitude, and charge-carrier mobility from 46 cm2/(V s) to 56 cm2/(V s). This results in improved solar-cell power conversion efficiency, from 16.4% to 19.3% for the devices employing perovskite films deposited with 20% substitution of PbI2 for PbCl2. Our method presents a scalable, dry, and solvent-free route to reducing nonradiative recombination centers and hence improving the performance of vapor-deposited metal-halide perovskite solar cells.

[1]  F. Palazón,et al.  Quadruple-Cation Wide-Bandgap Perovskite Solar Cells with Enhanced Thermal Stability Enabled by Vacuum Deposition , 2022, ACS energy letters.

[2]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[3]  G. Andersson,et al.  Unraveling the influence of CsCl/MACl on the formation of nanotwins, stacking faults and cubic supercell structure in FA-based perovskite solar cells , 2021 .

[4]  B. Rech,et al.  Co‐Evaporated Formamidinium Lead Iodide Based Perovskites with 1000 h Constant Stability for Fully Textured Monolithic Perovskite/Silicon Tandem Solar Cells , 2021, Advanced Energy Materials.

[5]  Jay B. Patel,et al.  Limits to Electrical Mobility in Lead-Halide Perovskite Semiconductors , 2021, The journal of physical chemistry letters.

[6]  S. Albrecht,et al.  Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition , 2021, ACS energy letters.

[7]  Yana Vaynzof,et al.  The Future of Perovskite Photovoltaics—Thermal Evaporation or Solution Processing? , 2020, Advanced Energy Materials.

[8]  S. Seok,et al.  Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells , 2020, Science.

[9]  F. Palazón,et al.  Efficient Vacuum-Deposited Perovskite Solar Cells with Stable Cubic FA1–xMAxPbI3 , 2020 .

[10]  F. Giustino,et al.  Intrinsic quantum confinement in formamidinium lead triiodide perovskite , 2020, Nature Materials.

[11]  H. Bolink,et al.  Deposition Kinetics and Compositional Control of Vacuum Processed CH3NH3PbI3 Perovskite. , 2020, The journal of physical chemistry letters.

[12]  S. Stranks,et al.  Multisource Vacuum Deposition of Methylammonium-Free Perovskite Solar Cells , 2020, ACS energy letters.

[13]  T. Unold,et al.  Photoluminescence‐Based Characterization of Halide Perovskites for Photovoltaics , 2020, Advanced Energy Materials.

[14]  K. Loh,et al.  Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules , 2020, Joule.

[15]  H. Bolink,et al.  Preparation and Characterization of Mixed Halide MAPbI 3− x Cl x Perovskite Thin Films by Three‐Source Vacuum Deposition , 2020 .

[16]  Thomas G. Allen,et al.  Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems , 2020, Nature Communications.

[17]  Zhengshan J. Yu,et al.  Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems , 2020, Science.

[18]  Jay B. Patel,et al.  Light Absorption and Recycling in Hybrid Metal Halide Perovskite Photovoltaic Devices , 2020, Advanced Energy Materials.

[19]  Jay B. Patel,et al.  Control over Crystal Size in Vapor Deposited Metal-Halide Perovskite Films , 2020, ACS energy letters.

[20]  Kai Zhu,et al.  Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures , 2020, Nature Energy.

[21]  J. Martínez‐Pastor,et al.  Short Photoluminescence Lifetimes in Vacuum-Deposited CH3NH3PbI3 Perovskite Thin Films as a Result of Fast Diffusion of Photogenerated Charge Carriers. , 2019, The journal of physical chemistry letters.

[22]  Christoph J. Brabec,et al.  Impurity Tracking Enables Enhanced Control and Reproducibility of Hybrid Perovskite Vapor Deposition , 2019, ACS applied materials & interfaces.

[23]  B. Richards,et al.  Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure , 2019, Advanced Energy Materials.

[24]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[25]  A. Fejfar,et al.  Temperature Dependence of the Urbach Energy in Lead Iodide Perovskites. , 2019, The journal of physical chemistry letters.

[26]  V. Bulović,et al.  Controllable Perovskite Crystallization via Antisolvent Technique Using Chloride Additives for Highly Efficient Planar Perovskite Solar Cells , 2019, Advanced Energy Materials.

[27]  S. Poncé,et al.  Origin of Low Carrier Mobilities in Halide Perovskites , 2019, ACS Energy Letters.

[28]  Christopher J. Tassone,et al.  Transformation from crystalline precursor to perovskite in PbCl2-derived MAPbI3 , 2018, Nature Communications.

[29]  M. Johnston,et al.  Impact of the Organic Cation on the Optoelectronic Properties of Formamidinium Lead Triiodide. , 2018, The journal of physical chemistry letters.

[30]  F. Giustino,et al.  Cubic or Orthorhombic? Revealing the Crystal Structure of Metastable Black-Phase CsPbI3 by Theory and Experiment , 2018, ACS Energy Letters.

[31]  H. Bolink,et al.  Vacuum Deposited Triple‐Cation Mixed‐Halide Perovskite Solar Cells , 2018 .

[32]  F. Toma,et al.  Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites. , 2018, Nano letters.

[33]  M. Calvo,et al.  ABX3 Perovskites for Tandem Solar Cells , 2017 .

[34]  Henk J. Bolink,et al.  Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production? , 2017 .

[35]  Jay B. Patel,et al.  Large-Area, Highly Uniform Evaporated Formamidinium Lead Triiodide Thin Films for Solar Cells , 2017 .

[36]  Jay B. Patel,et al.  Photon Reabsorption Masks Intrinsic Bimolecular Charge-Carrier Recombination in CH3NH3PbI3 Perovskite. , 2017, Nano letters.

[37]  Mukundan Thelakkat,et al.  Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells , 2017 .

[38]  Qingfeng Dong,et al.  Composition Engineering in Doctor‐Blading of Perovskite Solar Cells , 2017 .

[39]  Florian Hoegl,et al.  Brightly Luminescent and Color-Tunable Formamidinium Lead Halide Perovskite FAPbX3 (X = Cl, Br, I) Colloidal Nanocrystals. , 2017, Nano letters.

[40]  C. Ballif,et al.  Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells , 2017 .

[41]  Zhibin Yang,et al.  Stable Low‐Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells , 2016, Advanced materials.

[42]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[43]  M. Johnston,et al.  Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. , 2016, Accounts of chemical research.

[44]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[45]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[46]  J. Teuscher,et al.  Control and Study of the Stoichiometry in Evaporated Perovskite Solar Cells. , 2015, ChemSusChem.

[47]  A. Walsh,et al.  Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K , 2015, The Journal of Physical Chemistry Letters.

[48]  M. Kovalenko,et al.  Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I) , 2015, Nano letters.

[49]  Yang Yang,et al.  The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells , 2015, Nature Communications.

[50]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[51]  Ulrich Wiesner,et al.  Crystallization kinetics of organic-inorganic trihalide perovskites and the role of the lead anion in crystal growth. , 2015, Journal of the American Chemical Society.

[52]  Ni Zhao,et al.  The Role of Chlorine in the Formation Process of “CH3NH3PbI3‐xClx” Perovskite , 2014 .

[53]  Neha Arora,et al.  Investigation regarding the role of chloride in organic-inorganic halide perovskites obtained from chloride containing precursors. , 2014, Nano letters.

[54]  Giuseppe Gigli,et al.  Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[55]  R. Scheer,et al.  Monitoring the Phase Formation of Coevaporated Lead Halide Perovskite Thin Films by in Situ X-ray Diffraction. , 2014, The journal of physical chemistry letters.

[56]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[57]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[58]  Laura M Herz,et al.  Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3-xClx. , 2014, The journal of physical chemistry letters.

[59]  Giuseppe Gigli,et al.  MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties , 2013 .

[60]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[61]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[62]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[63]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[64]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[65]  D. Trots,et al.  High-temperature structural evolution of caesium and rubidium triiodoplumbates , 2008 .

[66]  Richard H. Friend,et al.  An improved experimental determination of external photoluminescence quantum efficiency , 1997 .

[67]  Jerome B. Hastings,et al.  Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O3 , 1987 .

[68]  M. Schreiber,et al.  Electronic structure, photoemission spectra, and vacuum-ultraviolet optical spectra of CsPb Cl 3 and CsPb Br 3 , 1981 .

[69]  T. Roisnel,et al.  Structural Studies of Tin-Doped Indium Oxide (ITO) and In4Sn3O12 , 1998 .