Artificial lamellar mesostructures to WS(2) nanotubes.

A direct pyrolysis method from artificial lamellar mesostructures to nanotubes was developed for the synthesis of tungsten disulfide (WS(2)) nanotubes. In this process, a tungsten sulfide artificial lamellar mesostructure composite with intercalated cetyltrimethylammonium cations (WS-L) was prepared on the basis of the recently developed template self-assembly of anionic tungstates (WS(4)(2-)) and cationic surfactant molecules (CTA(+)) in solution under appropriate conditions. After heating of this inorganic-surfactant lamellar composite material in an argon atmosphere to 850 degrees C, bulk quantities of uniform WS(2) nanotubes with diameters of 5-37.5 nm and lengths ranging from 0.2 to 5 microm were produced, which revealed a general rolling mechanism of layered sheets for tubule formation. The observations of transmission electron microscopy are in good agreement with the proposed rolling mechanism.