Micro-Raman study of the microheterogeneity in the MA-MC phase transition in 0.67PbMg1/3Nb2/3O3-0.33PbTiO3 single crystal

Polarized Raman spectroscopy has been employed to investigate the evolution of the microstructure of 0.67PbMg1/3Nb2/3O3-0.33PbTiO3 (PMN-33%PT) single crystal in the temperature range from −195 to 300 °C. The MA-MC-cubic transition sequence was observed in the microareas with MA-type (space group Cm) and MC-type (space group Pm) monoclinic structures. Interestingly, the MA-MC phase transition temperature exhibited remarkable microareal dependence due to the spatial inhomogeneity of polar nanoregions (PNRs). The MC-cubic phase transition took place at 155 °C in both microareas, which consisted well with previous reports. These results reveal that the phase transition in PMN-33%PT single crystal is closely related with the thermal dynamics of PNRs, which will be useful for understanding the microheterogeneity in this compound.

[1]  D. J. Barber,et al.  On short range ordering in the perovskite lead magnesium niobate , 1990 .

[2]  Xiaomei Lu,et al.  Coexistence of MA and MC phases in Pb(Mg1∕3Nb2∕3)0.68Ti0.32O3 single crystals , 2006 .

[3]  G. Burns,et al.  Ferroelectrics with a glassy polarization phase , 1990 .

[4]  W. J. Merz The Electric and Optical Behavior of BaTi O 3 Single-Domain Crystals , 1949 .

[5]  Haiqing Xu,et al.  Compositional Homogeneity and Electrical Properties of Lead Magnesium Niobate Titanate Single Crystals Grown by a Modified Bridgman Technique , 2000 .

[6]  Zuo-Guang Ye,et al.  Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials : Synthesis, Properties and Applications , 2008 .

[7]  V. Shuvaeva,et al.  The macroscopic symmetry of Pb(Mg1/3Nb2/3)1−xTixO3 in the morphotropic phase boundary region (x = 0.25–0.5) , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[8]  W. Cao,et al.  Raman spectroscopy study of ferroelectric modes in [001]-oriented 0.67Pb(Mg1∕3Nb2∕3)O3–0.33PbTiO3 single crystals , 2005 .

[9]  Y. Ishibashi,et al.  Electric field induced critical points and polarization rotations in relaxor ferroelectrics , 2007 .

[10]  M. Marssi,et al.  Polarized Raman and electrical study of single crystalline titanium modified lead magnesio-niobate , 1998 .

[11]  R. Katiyar,et al.  Lattice Dynamics in PMN , 2004, cond-mat/0404349.

[12]  Z. K. Xu,et al.  Polarized micro-Raman study of the field-induced phase transition in the relaxor 0.67PbMg1/3Nb2/3O3–0.33PbTiO3 single crystal , 2009 .

[13]  M. Itoh,et al.  Relaxor Pb(Mg(1/3)Nb(2/3))O3: a ferroelectric with multiple inhomogeneities. , 2009, Physical review letters.

[14]  Huiqian Luo,et al.  Piezoelectric response and origin in (001) Pb(Mg1/3Nb2/3)0.70Ti0.30O3 crystal , 2008 .

[15]  J. Gavarri,et al.  A structural model for the relaxor PbMg1/3Nb2/3O3 at 5 K , 1991 .

[16]  Yiping Guo,et al.  Dependence of high electric-field-induced strain on the composition and orientation of Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals , 2003 .

[17]  V. Ginzburg,et al.  On light scattering near phase-transition points in the solid state , 1974 .

[18]  A. Kania,et al.  Structural, vibrational and dielectric studies of 0.91PMN–0.09PT single crystals , 2005 .

[19]  Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis. , 2004, Physical review letters.

[20]  V. Kuzovkov,et al.  Kinetics of nanocavity formation based on F-center aggregation in thermochemically reduced MgO single crystals , 2001 .

[21]  Guangyong Xu,et al.  Phase instability induced by polar nanoregions in a relaxor ferroelectric system. , 2008, Nature materials.

[22]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[23]  S. Kojima,et al.  Microheterogeneity and relaxation in 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 relaxor single crystals , 2000 .

[24]  V. Shvartsman,et al.  Domain structure of0.8Pb(Mg1/3Nb2/3)O3−0.2PbTiO3studied by piezoresponse force microscopy , 2004 .

[25]  S. Kojima,et al.  Effect of chemically ordered regions on the acoustic behaviors in Pb(Mg1/3Nb2/3)O3 studied by Brillouin scattering , 2010 .

[26]  Haosu Luo,et al.  Investigation of the electrical properties of (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 single crystals with special reference to pyroelectric detection , 2009 .

[27]  Zuyong Feng,et al.  Composition and orientation dependence of phase configuration and dielectric constant tunability in poled Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals , 2004 .

[28]  A. Kania,et al.  Local phenomena of(1−x)PbMg1/3Nb2/3O3−xPbTiO3single crystals(0≤x≤0.38)studied by Raman scattering , 2008 .

[29]  P. Bouvier,et al.  Effect of high pressure on the Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 solid solution. A Raman scattering investigation , 2004 .

[30]  Rui Zhang,et al.  Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals , 2001 .

[31]  A. Kania,et al.  Cubic–tetragonal–orthorhombic phase transition sequence in 0.5PbMg1/3Nb2/3O3–0.5PbTiO3 and 0.36PbMg1/3Nb2/3O3–0.64PbTiO3 single crystals , 2006 .

[32]  L. Mitoseriu,et al.  Critical evolution of the local order parameters related to the nanopolar domains in Pb(Mg1/3Nb2/3)O3 ceramics , 2009 .