Localizing global descriptors for content-based image retrieval

In this paper, we explore, extend and simplify the localization of the description ability of the well-established MPEG-7 (Scalable Colour Descriptor (SCD), Colour Layout Descriptor (CLD) and Edge Histogram Descriptor (EHD)) and MPEG-7-like (Color and Edge Directivity Descriptor (CEDD)) global descriptors, which we call the SIMPLE family of descriptors. Sixteen novel descriptors are introduced that utilize four different sampling strategies for the extraction of image patches to be used as points of interest. Designing with focused attention for content-based image retrieval tasks, we investigate, analyse and propose the preferred process for the definition of the parameters involved (point detection, description, codebook sizes and descriptors’ weighting strategies). The experimental results conducted on four different image collections reveal an astonishing boost in the retrieval performance of the proposed descriptors compared to their performance in their original global form. Furthermore, they manage to outperform common SIFT- and SURF-based approaches while they perform comparably, if not better, against recent state-of-the-art methods that base their success on much more complex data manipulation.

[1]  Patrick Gros,et al.  Asymmetric hamming embedding: taking the best of our bits for large scale image search , 2011, ACM Multimedia.

[2]  C. Schmid,et al.  On the burstiness of visual elements , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Alan F. Smeaton,et al.  Combining image descriptors to effectively retrieve events from visual lifelogs , 2008, MIR '08.

[4]  Ling Shao,et al.  Multiview Alignment Hashing for Efficient Image Search , 2015, IEEE Transactions on Image Processing.

[5]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[6]  George R. Thoma,et al.  A medical image retrieval framework in correlation enhanced visual concept feature space , 2009, 2009 22nd IEEE International Symposium on Computer-Based Medical Systems.

[7]  Gang Hua,et al.  Building contextual visual vocabulary for large-scale image applications , 2010, ACM Multimedia.

[8]  Yannis Avrithis,et al.  Fusing MPEG-7 Visual Descriptors for Image Classification , 2005, ICANN.

[9]  Roland Siegwart,et al.  Vision-Controlled Micro Flying Robots: From System Design to Autonomous Navigation and Mapping in GPS-Denied Environments , 2014, IEEE Robotics & Automation Magazine.

[10]  Mathias Lux,et al.  Lire: lucene image retrieval: an extensible java CBIR library , 2008, ACM Multimedia.

[11]  Qi Tian,et al.  Coupled Binary Embedding for Large-Scale Image Retrieval , 2014, IEEE Transactions on Image Processing.

[12]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[13]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[14]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[15]  Michael Isard,et al.  Lost in quantization: Improving particular object retrieval in large scale image databases , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Ming Yang,et al.  Contextual weighting for vocabulary tree based image retrieval , 2011, 2011 International Conference on Computer Vision.

[17]  Yiannis S. Boutalis,et al.  Golden retriever: a Java based open source image retrieval engine , 2013, MM '13.

[18]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[19]  Yiannis S. Boutalis,et al.  Co.Vi.Wo.: Color Visual Words Based on Non-Predefined Size Codebooks , 2013, IEEE Transactions on Cybernetics.

[20]  Christopher G. Harris,et al.  3D positional integration from image sequences , 1988, Image Vis. Comput..

[21]  Yiannis S. Boutalis,et al.  CEDD: Color and Edge Directivity Descriptor: A Compact Descriptor for Image Indexing and Retrieval , 2008, ICVS.

[22]  Afzal Godil,et al.  Investigating the Bag-of-Words Method for 3D Shape Retrieval , 2010, EURASIP J. Adv. Signal Process..

[23]  Yiannis S. Boutalis,et al.  FCTH: Fuzzy Color and Texture Histogram - A Low Level Feature for Accurate Image Retrieval , 2008, 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services.

[24]  Gerald Schaefer,et al.  UCID: an uncompressed color image database , 2003, IS&T/SPIE Electronic Imaging.

[25]  Yiannis S. Boutalis,et al.  Mean Normalized Retrieval Order (MNRO): a new content-based image retrieval performance measure , 2014, Multimedia Tools and Applications.

[26]  Thomas S. Huang,et al.  A framework for grid-based image retrieval , 2004, ICPR 2004.

[27]  Mathias Lux,et al.  Img(Rummager): An Interactive Content Based Image Retrieval System , 2009, 2009 Second International Workshop on Similarity Search and Applications.

[28]  Xi Li,et al.  Ranking consistency for image matching and object retrieval , 2014, Pattern Recognit..

[29]  Ricardo da Silva Torres,et al.  Color Descriptors for Web Image Retrieval: A Comparative Study , 2008, 2008 XXI Brazilian Symposium on Computer Graphics and Image Processing.

[30]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[31]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[32]  George R. Thoma,et al.  A classification-driven similarity matching framework for retrieval of biomedical images , 2010, MIR '10.

[33]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[34]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[35]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Ling Shao,et al.  Feature Learning for Image Classification Via Multiobjective Genetic Programming , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[38]  Shiliang Zhang,et al.  Semantic-Aware Co-indexing for Image Retrieval , 2013, 2013 IEEE International Conference on Computer Vision.

[39]  Yiannis S. Boutalis,et al.  Content based radiology image retrieval using a fuzzy rule based scalable composite descriptor , 2009, Multimedia Tools and Applications.

[40]  J.-P. Renno,et al.  Evaluation of MPEG7 color descriptors for visual surveillance retrieval , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[41]  Claudio Gennaro,et al.  Combining local and global visual feature similarity using a text search engine , 2011, 2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI).

[42]  Cordelia Schmid,et al.  Improving Bag-of-Features for Large Scale Image Search , 2010, International Journal of Computer Vision.

[43]  Yiannis S. Boutalis,et al.  Searching images with MPEG-7 (& MPEG-7-like) Powered Localized dEscriptors: The SIMPLE answer to effective Content Based Image Retrieval , 2014, 2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI).

[44]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[45]  Kristin J. Dana,et al.  Compact representation of bidirectional texture functions , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[46]  Hermann Ney,et al.  Features for image retrieval: an experimental comparison , 2008, Information Retrieval.

[47]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[48]  Ling Shao,et al.  Learning Deep and Wide: A Spectral Method for Learning Deep Networks , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[49]  Yiannis S. Boutalis,et al.  Compact Composite Descriptors for Content Based Image Retrieval: Basics, Concepts, Tools , 2011 .

[50]  Bart Thomee,et al.  New trends and ideas in visual concept detection: the MIR flickr retrieval evaluation initiative , 2010, MIR '10.

[51]  Stefan M. Rüger,et al.  Evaluation of Texture Features for Content-Based Image Retrieval , 2004, CIVR.

[52]  Cordelia Schmid,et al.  Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search , 2008, ECCV.

[53]  Ling Shao,et al.  Weakly-Supervised Cross-Domain Dictionary Learning for Visual Recognition , 2014, International Journal of Computer Vision.

[54]  Stevan Rudinac,et al.  Accelerating of Image Retrieval in CBIR System with Relevance Feedback , 2007, EURASIP J. Adv. Signal Process..

[55]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[56]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[57]  Remco C. Veltkamp,et al.  Fixed partitioning and salient points with MPEG-7 cluster correlograms for image categorization , 2010, Pattern Recognit..