Multiscale finite element methods for porous media flows and their applications

In this paper, we discuss some applications of multiscale finite element methods to two-phase immiscible flow simulations in heterogeneous porous media. We discuss some extensions of multiscale finite element methods which take into account limited global information. These methods are well suited for channelized porous media, where the long-range effects are important. This is typical for some recent benchmark tests, such as the SPE comparative solution project [M. Christie, M. Blunt, Tenth SPE comparative solution project: A comparison of upscaling techniques, SPE Reser. Eval. Engrg. 4 (2001) 308-317], where porous media has a channelized structure. The applications of multiscale finite element methods to inverse problems arisen in subsurface characterization are also discussed in the paper.

[1]  Patrick Jenny,et al.  Adaptive Multiscale Finite-Volume Method for Multiphase Flow and Transport in Porous Media , 2005, Multiscale Model. Simul..

[2]  L.J. Durlofsky,et al.  Scale up of heterogeneous three dimensional reservoir descriptions , 1996 .

[3]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[4]  Yalchin Efendiev,et al.  Accurate multiscale finite element methods for two-phase flow simulations , 2006, J. Comput. Phys..

[5]  F. Wubs Notes on numerical fluid mechanics , 1985 .

[6]  T. Hou,et al.  A MULTISCALE FINITE ELEMENT METHOD FOR PDES WITH OSCILLATORY COEFFICIENTS , 1997 .

[7]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[8]  Louis J. Durlofsky,et al.  Coarse scale models of two phase flow in heterogeneous reservoirs: volume averaged equations and their relationship to existing upscaling techniques , 1998 .

[9]  C. Schwab,et al.  Homogenization via p -FEM for problems with microstructure , 2000 .

[10]  L. Durlofsky,et al.  A nonuniform coarsening approach for the scale-up of displacement processes in heterogeneous porous media , 1997 .

[11]  Yalchin Efendiev,et al.  Coarse-gradient Langevin algorithms for dynamic data integration and uncertainty quantification , 2006, J. Comput. Phys..

[12]  Jørg E. Aarnes,et al.  On the Use of a Mixed Multiscale Finite Element Method for GreaterFlexibility and Increased Speed or Improved Accuracy in Reservoir Simulation , 2004, Multiscale Model. Simul..

[13]  Zhiming Chen,et al.  A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..

[14]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[15]  David H. Sharp,et al.  Prediction and the quantification of uncertainty , 1999 .

[16]  Yalchin Efendiev,et al.  Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models , 2006, SIAM J. Sci. Comput..

[17]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[18]  M.N.M. vanLieshout Discussion contribution to U. Grenander and M.I. Miller: Representations of knowledge in complex systems , 1994 .

[19]  Dean S. Oliver,et al.  Conditioning Permeability Fields to Pressure Data , 1996 .

[20]  F. Brezzi Interacting with the subgrid world , 2005 .

[21]  Harold J. Kushner,et al.  Stochastic processes in information and dynamical systems , 1972 .

[22]  Michael Andrew Christie,et al.  Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .

[23]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[24]  Yalchin Efendiev,et al.  A Generalized Convection-Diffusion Model for Subgrid Transport in Porous Media , 2003, Multiscale Model. Simul..

[25]  T. Arbogast Implementation of a Locally Conservative Numerical Subgrid Upscaling Scheme for Two-Phase Darcy Flow , 2002 .

[26]  T. Hou,et al.  Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .

[27]  D. Oliver,et al.  Markov chain Monte Carlo methods for conditioning a permeability field to pressure data , 1997 .

[28]  Theofilos Strinopoulos,et al.  Upscaling Immiscible Two-Phase Flows in an Adaptive Frame , 2006 .

[29]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[30]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[31]  Yalchin Efendiev,et al.  Modeling of subgrid effects in coarse‐scale simulations of transport in heterogeneous porous media , 2000 .

[32]  Numerical Analysis 1999 , 2000 .

[33]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[34]  Andrew Westhead,et al.  Upscaling for two-phase flows in porous media , 2005 .

[35]  L. Durlofsky,et al.  A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations , 2003 .