Cooperative double deprotonation of bis(2-picolyl)amine leading to unexpected bimetallic mixed valence (M(-I), M(I)) rhodium and iridium complexes.

Cooperative reductive double deprotonation of the complex [Rh(I)(bpa)(cod)](+) ([4](+), bpa = PyCH(2)NHCH(2)Py) with one molar equivalent of base produces the bimetallic species [(cod)Rh(bpa-2H)Rh(cod)] (7), which displays a large Rh(-I),Rh(I) contribution to its electronic structure. The doubly deprotonated ligand in 7 hosts the two "Rh(cod)" fragments in two distinct compartments: a "square planar compartment" consisting of one of the Py donors and the central nitrogen donor and a "tetrahedral π-imine compartment" consisting of the other pyridine and an "imine C═N" donor. The formation of an "imine donor" in this process is the result of substantial electron transfer from the {bpa-2H}(2-) ligand to one of the rhodium centers to form the neutral imine ligand bpi (bpi = PyCH(2)N═CHPy). Hence, deprotonation of [Rh(I)(bpa)(cod)](+) represents a reductive process, effectively leading to a reduction of the metal oxidation state from Rh(I) to Rh(-I). The dinuclear iridium counterpart, complex 8, can also be prepared, but it is unstable in the presence of 1 mol equiv of the free bpa ligand, leading to quantitative formation of the neutral amido mononuclear compound [Ir(I)(bpa-H)(cod)] (2). All attempts to prepare the rhodium analog of 2 failed and led to the spontaneous formation of 7. The thermodynamic differences are readily explained by a lower stability of the M(-I) oxidation state for iridium as compared to rhodium. The observed reductive double deprotonation leads to the formation of unusual structures and unexpected reactivity, which underlines the general importance of "redox noninnocent ligands" and their substantial effect on the electronic structure of transition metals.

[1]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[2]  E. Herdtweck,et al.  Facile Double C−H Activation of Tetrahydrofuran by an Iridium PNP Pincer Complex , 2009 .

[3]  M. Drees,et al.  Ruthenium complexes with cooperative PNP-pincer amine, amido, imine, and enamido ligands: facile ligand backbone functionalization processes. , 2010, Inorganic chemistry.

[4]  P. Sharp Oxo and imido ligands in late transition metal chemistry , 2001 .

[5]  José A López,et al.  Intervalent bis(mu-aziridinato)M(II)--M(I) complexes (M=Rh,Ir): delocalized metallo-radicals or delocalized aminyl radicals? , 2008, Chemistry.

[6]  T. Ikariya,et al.  Hydrogen- and oxygen-driven interconversion between imido-bridged dirhodium(III) and amido-bridged dirhodium(II) complexes. , 2009, Journal of the American Chemical Society.

[7]  L. Shimon,et al.  N-H activation of amines and ammonia by Ru via metal-ligand cooperation. , 2010, Journal of the American Chemical Society.

[8]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[9]  B. de Bruin,et al.  Hydrogen-atom transfer in open-shell organometallic chemistry: the reactivity of Rh(II)(cod) and Ir(II)(cod) radicals. , 2007, Chemistry.

[10]  F. Lahoz,et al.  Structural and dynamic studies on amido-bridged rhodium and iridium complexes. , 2002, Chemistry.

[11]  T. Ikariya,et al.  Aerobic oxidation of alcohols with bifunctional transition-metal catalysts bearing C-N chelate ligands. , 2008, Chemistry, an Asian journal.

[12]  Connie C. Lu,et al.  Synthetic, structural, and mechanistic aspects of an amine activation process mediated at a zwitterionic Pd(II) center. , 2004, Journal of the American Chemical Society.

[13]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[14]  I. Sóvágó,et al.  Copper(II) complexes of low molecular weight derivatives of thymopoietin. , 1994, Journal of inorganic biochemistry.

[15]  David J. Taylor,et al.  Synthesis and structure of "16-electron" rhodium(III) catalysts fortransfer hydrogenation of a cyclic imine: mechanistic implications. , 2009, Chemical communications.

[16]  R. Perutz,et al.  Reactivity, Structures, and NMR Spectroscopy of Half-Sandwich Pentamethylcyclopentadienyl Rhodium Amido Complexes Relevant to Transfer Hydrogenation , 2009 .

[17]  Liangchun Li,et al.  Chemoselective conjugate reduction of alpha,beta-unsaturated ketones catalyzed by rhodium amido complexes in aqueous media. , 2010, The Journal of organic chemistry.

[18]  P. Maire,et al.  Synthesis of a rhodaazacyclopropane and characterization of its radical cation by EPR spectroscopy. , 2006, Angewandte Chemie.

[19]  C. Graiff,et al.  Heteronuclear rhodium, palladium, platinum, and gold organoimido complexes from dinuclear organoamido rhodium precursors. , 2004, Chemistry.

[20]  Jesse W. Tye,et al.  Computational studies of the relative rates for migratory insertions of alkenes into square-planar, methyl, -amido, and -hydroxo complexes of rhodium. , 2009, Journal of the American Chemical Society.

[21]  B. de Bruin,et al.  IrII(ethene): metal or carbon radical? Part II: oxygenation via iridium or direct oxygenation at ethene? , 2005, Dalton transactions.

[22]  L. Oro,et al.  Dinuclear Methoxy, Cyclooctadiene, and Barrelene Complexes of Rhodium(I) and Iridium(I) , 2007 .

[23]  R. Gelder,et al.  Amido-bridged dinuclear rhodium(I) complexes by deprotonation of mononuclear rhodium(I) amine complexes , 2002 .

[24]  B. de Bruin,et al.  Deprotonation induced ligand-to-metal electron transfer: synthesis of a mixed-valence Rh(-I,I) dinuclear compound and its reaction with dioxygen. , 2008, Journal of the American Chemical Society.

[25]  D. Milstein,et al.  Direct synthesis of imines from alcohols and amines with liberation of H2. , 2010, Angewandte Chemie.

[26]  Daniel G Nocera,et al.  Hydrogen production by molecular photocatalysis. , 2007, Chemical reviews.

[27]  G. Frison,et al.  A Stable Aminyl Radical Metal Complex , 2005, Science.

[28]  B. de Bruin,et al.  IrII(ethene): metal or carbon radical? , 2005, Journal of the American Chemical Society.

[29]  P. Sharp,et al.  Oxidative coupling of rhodium phenyl imido/amido complexes , 1994 .

[30]  R. Hooley,et al.  Steric effects control self-sorting in self-assembled clusters. , 2011, Inorganic chemistry.

[31]  David Milstein,et al.  Consecutive Thermal H2 and Light-Induced O2 Evolution from Water Promoted by a Metal Complex , 2009, Science.

[32]  D. Nocera,et al.  Hydrogenation of two-electron mixed-valence iridium alkyl complexes. , 2005, Inorganic chemistry.

[33]  Kilian Muñiz,et al.  Bifunctional metal-ligand catalysis: hydrogenations and new reactions within the metal-(di)amine scaffold. , 2005, Angewandte Chemie.

[34]  G. Schaftenaar,et al.  Molden: a pre- and post-processing program for molecular and electronic structures* , 2000, J. Comput. Aided Mol. Des..

[35]  J. Schwartz,et al.  Organometallics , 1987, Science.

[36]  F. Lahoz,et al.  Dynamic Behavior, Redistribution Reactions, and Intermetallic Distances of Dinuclear Bis(μ-pyrazolato)rhodium(I) Complexes , 1996 .

[37]  R. Gelder,et al.  Selective Oxidation of [RhI(cod)]+ by H2O2 and O2 , 1999 .

[38]  D. D. Perrin,et al.  Purification of laboratory chemicals , 1966 .

[39]  P. Maire,et al.  Heterolytic splitting of hydrogen with rhodium(I) amides. , 2005, Angewandte Chemie.

[40]  X. Zhang,et al.  The radical mechanism of cobalt(II) porphyrin-catalyzed olefin aziridination and the importance of cooperative H-bonding. , 2011, Dalton transactions.

[41]  T. Krämer,et al.  Dioxygen activation by mixed-valent dirhodium complexes of redox non-innocent azoaromatic ligands. , 2010, Chemical communications.

[42]  L. Wojtas,et al.  Experimental evidence for cobalt(III)-carbene radicals: key intermediates in cobalt(II)-based metalloradical cyclopropanation. , 2011, Journal of the American Chemical Society.

[43]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[44]  D. Nocera Chemistry of personalized solar energy. , 2009, Inorganic chemistry.

[45]  José A López,et al.  One-electron versus two-electron mechanisms in the oxidative addition reactions of chloroalkanes to amido-bridged rhodium complexes. , 2007, Chemistry.

[46]  Jean‐Valère Naubron,et al.  Ethanol as hydrogen donor: highly efficient transfer hydrogenations with rhodium(I) amides. , 2008, Angewandte Chemie.

[47]  T. Kiss,et al.  Oxovanadium(IV) complexes of salicyl-L-aspartic acid and salicylglycyl-L-aspartic acid. , 2005, Dalton transactions.

[48]  J. Reek,et al.  Selective C-C coupling of Ir-ethene and Ir-carbenoid radicals. , 2008, Chemistry.

[49]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[50]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[51]  Patrick L. Holland,et al.  Application of the E-C Approach to Understanding the Bond Energies Thermodynamics of Late-Metal Amido, Aryloxo and Alkoxo Complexes: An Alternative to pπ/dπ Repulsion , 1999 .

[52]  Ryoji Noyori,et al.  Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo- and Stereoselective Hydrogenation of Ketones. , 2001, Angewandte Chemie.

[53]  B. de Bruin,et al.  Ligand oxidation of a deprotonated bis(picolyl)amine Ir(I)(cod) complex. , 2008, Chemistry.

[54]  L. Oro,et al.  The chemical and electrochemical one-electron oxidation of diamidonaphthalene-bridged complexes; paramagnetic [Rh2]3+-containing A-frames , 1989 .

[55]  J. Baker An algorithm for the location of transition states , 1986 .

[56]  J. Hartwig,et al.  Transfer of amido groups from isolated rhodium(I) amides to alkenes and vinylarenes. , 2005, Journal of the American Chemical Society.

[57]  K. G. Caulton THE INFLUENCE OF PI -STABILIZED UNSATURATION AND FILLED/FILLED REPULSIONS IN TRANSITION METAL CHEMISTRY , 1994 .

[58]  R. Ahlrichs,et al.  Efficient molecular numerical integration schemes , 1995 .

[59]  J. Reek,et al.  Ligands that store and release electrons during catalysis. , 2011, Angewandte Chemie.

[60]  Jianliang Xiao,et al.  Asymmetric Transfer Hydrogenation in Water with Platinum Group Metal Catalysts , 2010 .

[61]  P. Maire,et al.  A tetracoordinated rhodium aminyl radical complex. , 2006, Journal of the American Chemical Society.

[62]  J. Reek,et al.  Water splitting by cooperative catalysis. , 2009, Angewandte Chemie.

[63]  D. M. Grove,et al.  Intramolecular CH activation and oxidative addition reactions of iridium complexes containing arylamines with bulky substituents on n itrogen; X-ray structures of [IrI(C6H4CH2NEt2-2-C,C)] and [IrIII(C6H4CH2Net(CHMe)-2-C,N,C′)I(cod)] (cod = cycloocta-1,-5-diene) , 1996 .

[64]  D. Nocera,et al.  Metal-halide bond photoactivation from a PtIII-AuII complex. , 2007, Journal of the American Chemical Society.

[65]  D. Nocera,et al.  A photocycle for hydrogen production from two-electron mixed-valence complexes. , 2005, Journal of the American Chemical Society.

[66]  S. Brandès,et al.  Synthesis, characterization and X-ray crystal structures of cyclam derivatives. 7. Hydrogen-bond induced allosteric effects and protonation cooperativity in a macrotricyclic bisdioxocyclam receptor , 2005 .

[67]  David J. Williams,et al.  Synthesis and Structural Characterization of a Novel Dipalladium Complex with an Unprecedented PdCN Bonding Motif , 2003 .

[68]  Yuanfu Tang,et al.  Chemoselective and enantioselective transfer hydrogenation of β,β-disubstituted nitroalkenes catalyzed by a water-insoluble chiral diamine–rhodium complex in water , 2010 .

[69]  A. Spek,et al.  Open-shell organometallic [MII(dbcot(bislutidylamine)]2+ complexes (M = Rh, Ir): unexpected base-assisted reduction of the metal instead of amine ligand deprotonation , 2011 .

[70]  E. Herdtweck,et al.  Iridium Olefin Complexes Bearing Dialkylamino/amido PNP Pincer Ligands: Synthesis, Reactivity, and Solution Dynamics† , 2009 .

[71]  K. Philippot,et al.  Rhodium-catalysed hydroamination-hydroarylation of norbornene with aniline, toluidines or diphenylamine , 1994 .

[72]  D. Nocera,et al.  A model for two-electron mixed valence in metal-metal bonded dirhodium compounds. , 2005, Chemical communications.

[73]  B. Bruin,et al.  Disproportionation of RhII(cod) to RhI(cod) and RhIII(cycloocta-2,5-dien-1-yl): Hydrogen atom transfer vs electron and proton transfer , 2003 .

[74]  Bas de Bruin,et al.  Ligand-centred reactivity of bis(picolyl)amine iridium: sequential deprotonation, oxidation and oxygenation of a "non-innocent" ligand. , 2009, Chemistry.

[75]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[76]  R. Ahlrichs,et al.  Contracted all-electron Gaussian basis sets for atoms Rb to Xe , 2000 .

[77]  L. Shimon,et al.  Direct hydrogenation of amides to alcohols and amines under mild conditions. , 2010, Journal of the American Chemical Society.

[78]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[79]  Karl Wieghardt,et al.  Radical Ligands Confer Nobility on Base-Metal Catalysts , 2010, Science.

[80]  Wojciech I Dzik,et al.  'Carbene radicals' in Co(II)(por)-catalyzed olefin cyclopropanation. , 2010, Journal of the American Chemical Society.

[81]  B. Bruin,et al.  Paramagnetic (Alkene)Rh and (Alkene)Ir Complexes: Metal or Ligand Radicals?† , 2007 .

[82]  X. Zhang,et al.  Mechanism of cobalt(II) porphyrin-catalyzed C-H amination with organic azides: radical nature and H-atom abstraction ability of the key cobalt(III)-nitrene intermediates. , 2011, Journal of the American Chemical Society.

[83]  David Milstein,et al.  Direct Synthesis of Amides from Alcohols and Amines with Liberation of H2 , 2007, Science.

[84]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[85]  F. Lahoz,et al.  Dinuclear rhodium and iridium complexes with mixed amido/methoxo and amido/hydroxo bridges. , 2002, Inorganic chemistry.

[86]  S. Matsukawa,et al.  Mono(sulfido)-bridged mixed-valence nitrosyl complex: protonation and oxidative addition of iodine across the Ir(II)-Ir(0) bond. , 2003, Chemical communications.

[87]  D. Nocera,et al.  Intramolecular C−H Bond Activation and Redox Isomerization across Two-Electron Mixed Valence Diiridium Cores , 2008 .