Polymer solar cells with enhanced fill factors

New designs of donor polymers yield organic solar cells with fill factors approaching 80%, significantly higher than those of conventional cells. This enhanced performance is attributed to the close-packed and highly ordered structure of the polymers PTPD3T and PBT13T, which leads to efficient charge extraction and suppressed recombination.

[1]  R. Hamilton,et al.  Charge-density-based analysis of the current–voltage response of polythiophene/fullerene photovoltaic devices , 2010, Proceedings of the National Academy of Sciences.

[2]  T. Sun,et al.  The dedicated high-resolution grazing-incidence X-ray scattering beamline 8-ID-E at the Advanced Photon Source. , 2012, Journal of synchrotron radiation.

[3]  Neil C Greenham,et al.  Polymer solar cells , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  Alberto Salleo,et al.  Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives. , 2012, Journal of the American Chemical Society.

[5]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[6]  M. Toney,et al.  Structural Order in Bulk Heterojunction Films Prepared with Solvent Additives , 2011, Advanced materials.

[7]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[8]  Detlef-M Smilgies,et al.  Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. , 2009, Journal of applied crystallography.

[9]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[10]  Yang Yang,et al.  A Metal‐Oxide Interconnection Layer for Polymer Tandem Solar Cells with an Inverted Architecture , 2011, Advanced materials.

[11]  M. Ratner,et al.  n-channel polymers by design: optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors. , 2008, Journal of the American Chemical Society.

[12]  Amy M. Ballantyne,et al.  Recombination Dynamics as a Key Determinant of Open Circuit Voltage in Organic Bulk Heterojunction Solar Cells: A Comparison of Four Different Donor Polymers , 2010, Advanced materials.

[13]  R. J. Kline,et al.  Semiconducting Thienothiophene Copolymers: Design, Synthesis, Morphology, and Performance in Thin‐Film Organic Transistors , 2009 .

[14]  Luping Yu,et al.  When Function Follows Form: Effects of Donor Copolymer Side Chains on Film Morphology and BHJ Solar Cell Performance , 2010, Advanced materials.

[15]  Robert A. Street,et al.  Interface state recombination in organic solar cells , 2010 .

[16]  E. Weiss,et al.  Charge carrier resolved relaxation of the first excitonic state in CdSe quantum dots probed with near-infrared transient absorption spectroscopy. , 2010, The journal of physical chemistry. B.

[17]  N. Koch,et al.  High Fill Factor and Open Circuit Voltage in Organic Photovoltaic Cells with Diindenoperylene as Donor Material , 2010 .

[18]  Tracey M. Clarke,et al.  Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells , 2012 .

[19]  M. Green,et al.  24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates , 1999 .

[20]  G. Hadziioannou,et al.  A [3,2-b]thienothiophene-alt-benzothiadiazole copolymer for photovoltaic applications: design, synthesis, material characterization and device performances , 2009 .

[21]  B. Kippelen Organic Photovoltaics , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[22]  Valentin D. Mihailetchi,et al.  Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells , 2005 .

[23]  Mats Andersson,et al.  Vertical phase separation in spin-coated films of a low bandgap polyfluorene/PCBM blend—Effects of specific substrate interaction , 2007 .

[24]  Junping Du,et al.  On the energetic dependence of charge separation in low-band-gap polymer/fullerene blends. , 2012, Journal of the American Chemical Society.

[25]  Thuc‐Quyen Nguyen,et al.  Effect of Charge Recombination on the Fill Factor of Small Molecule Bulk Heterojunction Solar Cells , 2011 .

[26]  Donal D. C. Bradley,et al.  Bimolecular recombination losses in polythiophene: Fullerene solar cells , 2008 .

[27]  M. McGehee,et al.  Organic bulk heterojunction solar cells using poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2,-b]thiophene) , 2008 .

[28]  David Beljonne,et al.  The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors , 2012, Science.

[29]  Alan J. Heeger,et al.  Charge Formation, Recombination, and Sweep‐Out Dynamics in Organic Solar Cells , 2012 .

[30]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[31]  M. Hampton,et al.  Dynamics of Crystallization and Disorder during Annealing of P3HT/PCBM Bulk Heterojunctions , 2011 .

[32]  Guillermo C Bazan,et al.  "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. , 2009, Accounts of chemical research.

[33]  Paul H. Wöbkenberg,et al.  Low-voltage organic transistors based on solution processed semiconductors and self-assembled monolayer gate dielectrics , 2008 .

[34]  Martin A. Green,et al.  Solar cell fill factors: General graph and empirical expressions , 1981 .

[35]  Thomas Kirchartz,et al.  Recombination via tail states in polythiophene:fullerene solar cells , 2011 .

[36]  Ian A. Howard,et al.  Effect of Nongeminate Recombination on Fill Factor in Polythiophene/Methanofullerene Organic Solar Cells , 2010 .

[37]  B. de Boer,et al.  Effect of traps on the performance of bulk heterojunction organic solar cells , 2007 .

[38]  F. Gao,et al.  Comparison of the Operation of Polymer/Fullerene, Polymer/Polymer, and Polymer/Nanocrystal Solar Cells: A Transient Photocurrent and Photovoltage Study , 2011 .

[39]  Jenny Nelson,et al.  Non‐Geminate Recombination as the Primary Determinant of Open‐Circuit Voltage in Polythiophene:Fullerene Blend Solar Cells: an Analysis of the Influence of Device Processing Conditions , 2011 .

[40]  F. Laquai,et al.  Effect of External Bias on Nongeminate Recombination in Polythiophene/Methanofullerene Organic Solar Cells , 2011 .

[41]  J. C. de Mello,et al.  Charge extraction analysis of charge carrier densities in a polythiophene/fullerene solar cell: Analysis of the origin of the device dark current , 2008 .

[42]  M. Chabinyc X‐ray Scattering from Films of Semiconducting Polymers , 2008 .

[43]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[44]  Dieter Neher,et al.  Nongeminate Recombination and Charge Transport Limitations in Diketopyrrolopyrrole‐Based Solution‐Processed Small Molecule Solar Cells , 2013 .

[45]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[46]  M. Toney,et al.  Drastic Control of Texture in a High Performance n-Type Polymeric Semiconductor and Implications for Charge Transport , 2011 .

[47]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[48]  M. Ratner,et al.  Bithiopheneimide-dithienosilole/dithienogermole copolymers for efficient solar cells: information from structure-property-device performance correlations and comparison to thieno[3,4-c]pyrrole-4,6-dione analogues. , 2012, Journal of the American Chemical Society.

[49]  Myung‐Gil Kim,et al.  Thieno[3,4-c]pyrrole-4,6-dione-based polymer semiconductors: toward high-performance, air-stable organic thin-film transistors. , 2011, Journal of the American Chemical Society.

[50]  Alan J. Heeger,et al.  Recombination in polymer-fullerene bulk heterojunction solar cells , 2010 .

[51]  T. Koganezawa,et al.  Synthesis, characterization, and transistor and solar cell applications of a naphthobisthiadiazole-based semiconducting polymer. , 2012, Journal of the American Chemical Society.

[52]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[53]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[54]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[55]  P. Murgatroyd,et al.  Theory of space-charge-limited current enhanced by Frenkel effect , 1970 .

[56]  H. Sirringhaus,et al.  Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. , 2011, Journal of the American Chemical Society.

[57]  Valentin D. Mihailetchi,et al.  Charge Transport and Photocurrent Generation in Poly(3‐hexylthiophene): Methanofullerene Bulk‐Heterojunction Solar Cells , 2006 .

[58]  Kazuhito Hashimoto,et al.  Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. , 2011, Nature materials.

[59]  Martin A. Green,et al.  Solar cell efficiency tables (version 40) , 2012 .