A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain

[1]  A. Oliva,et al.  A Real-World Size Organization of Object Responses in Occipitotemporal Cortex , 2012, Neuron.

[2]  J. S. Guntupalli,et al.  The Representation of Biological Classes in the Human Brain , 2012, The Journal of Neuroscience.

[3]  Bryan R. Conroy,et al.  A Common, High-Dimensional Model of the Representational Space in Human Ventral Temporal Cortex , 2011, Neuron.

[4]  J. Gallant,et al.  Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies , 2011, Current Biology.

[5]  Johan Wagemans,et al.  Distributed subordinate specificity for bodies, faces, and buildings in human ventral visual cortex , 2010, NeuroImage.

[6]  Tom Michael Mitchell,et al.  A Neurosemantic Theory of Concrete Noun Representation Based on the Underlying Brain Codes , 2010, PloS one.

[7]  Ryan J. Prenger,et al.  Bayesian Reconstruction of Natural Images from Human Brain Activity , 2009, Neuron.

[8]  Christopher J. Fox,et al.  Defining the face processing network: Optimization of the functional localizer in fMRI , 2009, Human brain mapping.

[9]  R. Tootell,et al.  An anterior temporal face patch in human cortex, predicted by macaque maps , 2009, Proceedings of the National Academy of Sciences.

[10]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[11]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[12]  Tom Michael Mitchell,et al.  Predicting Human Brain Activity Associated with the Meanings of Nouns , 2008, Science.

[13]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[14]  D. Heeger,et al.  A Hierarchy of Temporal Receptive Windows in Human Cortex , 2008, The Journal of Neuroscience.

[15]  N. Kanwisher,et al.  Interpreting fMRI data: maps, modules and dimensions , 2008, Nature Reviews Neuroscience.

[16]  Kathleen A. Hansen,et al.  Topographic Organization in and near Human Visual Area V4 , 2007, The Journal of Neuroscience.

[17]  N. Kanwisher,et al.  Domain specificity in visual cortex. , 2006, Cerebral cortex.

[18]  Alison J. Wiggett,et al.  Patterns of fMRI Activity Dissociate Overlapping Functional Brain Areas that Respond to Biological Motion , 2006, Neuron.

[19]  N. Kanwisher,et al.  Location and spatial profile of category‐specific regions in human extrastriate cortex , 2006, Human brain mapping.

[20]  Rebecca F. Schwarzlose,et al.  Separate face and body selectivity on the fusiform gyrus. , 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  T. Allison,et al.  Functional anatomy of biological motion perception in posterior temporal cortex: an FMRI study of eye, mouth and hand movements. , 2005, Cerebral cortex.

[22]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[23]  Rafael Malach,et al.  Detailed Exploration of Face-related Processing in Congenital Prosopagnosia: 2. Functional Neuroimaging Findings , 2005, Journal of Cognitive Neuroscience.

[24]  Alice J. O'Toole,et al.  Partially Distributed Representations of Objects and Faces in Ventral Temporal Cortex , 2005, Journal of Cognitive Neuroscience.

[25]  J. Gallant,et al.  Predicting neuronal responses during natural vision , 2005, Network.

[26]  P. Downing,et al.  Selectivity for the human body in the fusiform gyrus. , 2005, Journal of neurophysiology.

[27]  R. Malach,et al.  Intersubject Synchronization of Cortical Activity During Natural Vision , 2004, Science.

[28]  Istvan Molnar-Szakacs,et al.  Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline , 2004, NeuroImage.

[29]  S. Zeki,et al.  Functional brain mapping during free viewing of natural scenes , 2004, Human brain mapping.

[30]  I. Johnsrude,et al.  Somatotopic Representation of Action Words in Human Motor and Premotor Cortex , 2004, Neuron.

[31]  Alexander Borst,et al.  Quantifying variability in neural responses and its application for the validation of model predictions , 2004, Network.

[32]  Rafael Malach,et al.  Large-Scale Mirror-Symmetry Organization of Human Occipito-Temporal Object Areas , 2003, Neuron.

[33]  R. Campbell,et al.  Reading Speech from Still and Moving Faces: The Neural Substrates of Visible Speech , 2003, Journal of Cognitive Neuroscience.

[34]  J. Downar,et al.  A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. , 2002, Journal of neurophysiology.

[35]  Maneesh Sahani,et al.  How Linear are Auditory Cortical Responses? , 2002, NIPS.

[36]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[37]  N. Kanwisher,et al.  The Human Body , 2001 .

[38]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[39]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[40]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[41]  G. Rizzolatti,et al.  Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study , 2001, The European journal of neuroscience.

[42]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[43]  T. Schormann,et al.  Functional delineation of the human occipito-temporal areas related to face and scene processing. A PET study. , 2000, Brain : a journal of neurology.

[44]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[45]  S Lehéricy,et al.  The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. , 2000, Brain : a journal of neurology.

[46]  A. Berthoz,et al.  An anatomical landmark for the supplementary eye fields in human revealed with functional magnetic resonance imaging. , 1999, Cerebral cortex.

[47]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[48]  J. Desmond,et al.  Functional Specialization for Semantic and Phonological Processing in the Left Inferior Prefrontal Cortex , 1999, NeuroImage.

[49]  E. Halgren,et al.  Location of human face‐selective cortex with respect to retinotopic areas , 1999, Human brain mapping.

[50]  S. Edelman,et al.  Toward direct visualization of the internal shape representation space by fMRI , 1998, Psychobiology.

[51]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[52]  M. D’Esposito,et al.  An Area within Human Ventral Cortex Sensitive to “Building” Stimuli Evidence and Implications , 1998, Neuron.

[53]  Karl J. Friston,et al.  The functional anatomy of attention to visual motion. A functional MRI study. , 1998, Brain : a journal of neurology.

[54]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[55]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[56]  T. Allison,et al.  Face-Specific Processing in the Human Fusiform Gyrus , 1997, Journal of Cognitive Neuroscience.

[57]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[58]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[59]  J. Haxby,et al.  Functional Magnetic Resonance Imaging of Human Visual Cortex during Face Matching: A Comparison with Positron Emission Tomography , 1996, NeuroImage.

[60]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[61]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[63]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[64]  G. McCarthy,et al.  Functional organization of human supplementary motor cortex studied by electrical stimulation , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[66]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[67]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[68]  W. Penfield,et al.  SOMATIC MOTOR AND SENSORY REPRESENTATION IN THE CEREBRAL CORTEX OF MAN AS STUDIED BY ELECTRICAL STIMULATION , 1937 .