Characterization of complex plasmonic modes in two-dimensional periodic arrays of metal nanospheres

Two-dimensional periodic arrays of noble metal nanospheres support a variety of optical phenomena, including bound and leaky modes of several types. The scope of this paper is the characterization of the modal dispersion diagrams of planar arrays of silver nanospheres, with the ability to follow individual modal evolutions. The metal spherical nanoparticles are described using the single dipole approximation technique by including all the retarded dynamic field terms. Polarizability of the nanospheres is provided by the Mie theory. Dispersion diagrams for both physical and nonphysical modes are shown for a square lattice of Ag nanospheres for the case of lossless and lossy metal particles, with dipole moments polarized along the x, y, and z directions. Though an array with one set of parameters has been studied, the analysis method and classification are general. The evolution of modes through different Riemann sheets and analysis of guidance and radiation are studied in detail.

[1]  M. Sigalas,et al.  Metallic photonic crystals at optical wavelengths , 2000 .

[2]  Filippo Capolino,et al.  Metamaterials Based on Pairs of Tightly Coupled Scatterers , 2009 .

[3]  K. E. Jordan,et al.  An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures , 1986 .

[4]  Sergei A. Tretyakov,et al.  Sub-wavelength resolution in linear arrays of plasmonic particles , 2007 .

[5]  Paolo Baccarelli,et al.  Full-wave analysis of bound and leaky modes propagating along 2d periodic printed structures with arbitrary metallisation in the unit cell , 2007 .

[6]  A. Polman,et al.  Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains , 2005, cond-mat/0512187.

[7]  Taihong Wang,et al.  A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. , 2008, Talanta.

[8]  Ari Viitanen,et al.  Near-field enhancement and subwavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres , 2006 .

[9]  F. Aussenegg,et al.  Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays , 2002 .

[10]  Traveling waves on two- and three-dimensional periodic arrays of lossless magnetodielectric spheres , 2006, 2006 First European Conference on Antennas and Propagation.

[11]  H. H. Liu,et al.  Optical behaviours of two dimensional Au nanoparticle arrays within porous anodic alumina , 2007 .

[12]  Harry A. Atwater,et al.  Optical pulse propagation in metal nanoparticle chain waveguides , 2003 .

[13]  F. Capolino,et al.  Fundamental properties of the field at the interface between air and a periodic artificial material excited by a line source , 2005, IEEE Transactions on Antennas and Propagation.

[14]  Vassilios Yannopapas,et al.  Optical properties of a periodic monolayer of metallic nanospheres on a dielectric waveguide , 2005 .

[15]  Donald R. Wilton,et al.  Efficient computation of the 3D Green's function for the Helmholtz operator for a linear array of point sources using the Ewald method , 2007, J. Comput. Phys..

[16]  Sergei A. Tretyakov,et al.  Subwavelength imaging in a superlens of plasmon nanospheres , 2007 .

[17]  S. Tretyakov,et al.  Subwavelength resolution for horizontal and vertical polarization by coupled arrays of oblate nanoellipsoids. , 2009, Optics letters.

[18]  P. K. Aravind,et al.  The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy , 1983 .

[19]  Y. Saito,et al.  Imaging and spectroscopy through plasmonic nano-probe , 2009 .

[20]  R. Shore,et al.  Travelling electromagnetic waves on linear periodic arrays of lossless spheres , 2005 .

[21]  N Engheta,et al.  Negative effective permeability and left-handed materials at optical frequencies. , 2004, Optics express.

[22]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[23]  D S Citrin,et al.  Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium. , 2006, Optics letters.

[24]  R. Shore,et al.  Complex Waves on 1D, 2D, and 3D Periodic Arrays of Lossy and Lossless Magnetodielectric Spheres , 2010 .

[25]  R. Shore,et al.  Traveling waves on two‐ and three‐dimensional periodic arrays of lossless scatterers , 2007 .

[26]  C. Holloway,et al.  A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix , 2003 .

[27]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[28]  Donald R. Wilton,et al.  Choosing splitting parameters and summation limits in the numerical evaluation of 1-D and 2-D periodic Green's functions using the Ewald method , 2008 .

[29]  Harry A. Atwater,et al.  Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles , 2005 .

[30]  A. Koenderink Plasmon nanoparticle array waveguides for single photon and single plasmon sources. , 2009, Nano letters.

[31]  Sergei A. Tretyakov,et al.  Super-resolution and near-field enhancement with layers of resonant arrays of nanoparticles , 2009 .

[32]  I. Thompson,et al.  Scattering by a Semi-Infinite Periodic Array and the Excitation of Surface Waves , 2007, SIAM J. Appl. Math..

[33]  Donald R. Wilton,et al.  Field Representations in Periodic Artificial Materials Excited by a Source , 2009 .

[34]  Filippo Capolino,et al.  Effective model and investigation of the near-field enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Nader Engheta,et al.  Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines , 2006 .

[36]  F. Capolino,et al.  Comparison of Methods for Calculating the Field Excited by a Dipole Near a 2-D Periodic Material , 2007, IEEE Transactions on Antennas and Propagation.

[37]  K. Fung,et al.  Collective plasmonic modes in two-dimensional periodic arrays of metal nanoparticles , 2008 .

[38]  P. Baccarelli,et al.  A full-wave numerical approach for modal analysis of 1-D periodic microstrip structures , 2006, IEEE Transactions on Microwave Theory and Techniques.

[39]  Filippo Capolino,et al.  Single Dipole Approximation for Modeling Collections of Nanoscatterers , 2009 .

[40]  N. Engheta,et al.  Negative Refraction in Infrared and Visible Domains , 2009 .

[41]  K. Kavanagh,et al.  A new generation of sensors based on extraordinary optical transmission. , 2008, Accounts of chemical research.

[42]  L. Felsen,et al.  Radiation and scattering of waves , 1972 .

[43]  Nader Engheta,et al.  Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles , 2008, 0805.2329.

[44]  Sung Yong Park,et al.  Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation , 2004 .

[45]  P. Burghignoli,et al.  Excitation of a Periodic Microstrip Line b>y an Aperiodic Delta-Gap Source , 2009, IEEE Antennas and Wireless Propagation Letters.

[46]  R. Xu,et al.  Planar Metamaterials Supporting Multiple Left-Handed Modes , 2006 .

[47]  Albert Polman,et al.  Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides , 2007 .

[48]  Filippo Capolino,et al.  LINEAR AND PLANAR PERIODIC ARRAYS OF METALLIC NANOSPHERES: FABRICATION, OPTICAL PROPERTIES AND APPLICATIONS , 2011 .

[49]  S.A. Tretyakov,et al.  Sub-wavelength imaging and resolution by two linear chains of plasmonic particles , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[50]  Arthur D. Yaghjian,et al.  Scattering-matrix analysis of linear periodic arrays , 2002 .

[51]  Ensembles of plasmonic nanospheres at optical frequencies and a problem of negative index behavior , 2007, cond-mat/0701186.

[52]  G. W. Ford,et al.  PROPAGATION OF OPTICAL EXCITATIONS BY DIPOLAR INTERACTIONS IN METAL NANOPARTICLE CHAINS , 2004 .