Improved syntheses, structures, spectral and electrochemical properties of [Mn2III(µ-O)(µ-O2CMe)2L2]2+ and [Mn2IV(µ-O)3L2]2+ complexes. Two homologous series derived from eight N-substituted 1,4,7-triazacyclononanes

A series of eight N-substituted 1,4,7-triazacyclononanes L has been prepared having combinations of hydrogen, methyl, ethyl or propyl substituents on the three nitrogens. From the monoprotonated macrocycles dinuclear manganese complexes [Mn2III(µ-O)(µ-O2CMe)2L2]X2(X = ClO4 or PF6) were prepared under anhydrous conditions in high yield. A relationship between the absorption bands and the electrochemical properties of the complexes containing variously methyl-substituted L has been observed. From the MexEt3–x- and Pr3-substituted macrocycles triple oxygen-bridged dinuclear manganese complexes [Mn2IV(µ-O)3L2]2+ were prepared starting from L, a manganese(II) salt and counter ion, subsequently treated with alkaline hydrogen peroxide. The yields of this reaction depend on the sizes of substituents at N on the macrocycle. The crystal structure of [Mn2IV(µ-O)3L2][PF6]2·0.5KPF6(L = 1,4,7-trimethyl-1,4,7-triazacyclononane) has been determined. This revealed the core to be almost identical to that of known triethyl analogue, with the methyl groups of the ethyl substituents pointing outwards to minimize steric interaction. The Mn–Mn distance of 2.295 A is likewise exceptionally short and the value for the Mn–O–Mn bond angle of 77.9° is also very low. The NMR and UV/VIS absorption spectra and electrochemical measurements indicate very similar structures for these triple oxygen-bridged dinuclear manganese complexes.

[1]  D. J. Stufkens,et al.  Proton Coupled Electron-Transfer Reactions in [MnEIVC2(mu-O)C3LE'C2]E2+ (LE'=1,4,7-trimethyl-1,4,7-triazacyclononane). , 1995 .

[2]  Uday S. Racherla,et al.  Efficient manganese catalysts for low-temperature bleaching , 1994, Nature.

[3]  K. Wieghardt,et al.  Synthesis and co-ordination chemistry of the macrocycle 1,4,7-triisopropyl-1,4,7-triazacyclononane , 1993 .

[4]  N. Stephenson,et al.  Proton control of the conformation of a macrobicyclic ligand , 1993 .

[5]  K. Wieghardt,et al.  Synthese von N‐phenolat‐funktionalisierten Makrocyclen des 1,4,7‐Trazacyclononans sowie des 1‐Oxa‐4,7‐diazacyclononans und ihre Komplexchemie mit Eisen(III) , 1992 .

[6]  K. Wieghardt,et al.  Spin exchange coupling in asymmetric heterodinuclear complexes containing the .mu.-oxo-bis(.mu.-acetato)dimetal core , 1992 .

[7]  K. Wieghardt,et al.  Switching the mechanism of spin-exchange coupling in (.mu.-oxo)bis(.mu.-carboxylato)divanadium(III) complexes by protonation of the oxo bridge , 1991 .

[8]  K. Wieghardt,et al.  Coordination chemistry of rhenium(V), -(IV), and -(III) with the macrocyclic ligands 1,4,7-triazacyclononane (L) and its N-methylated derivative (L'). Crystal structures of [LReCl3]Cl, [L2Re2Cl2(.mu.-Cl)(.mu.-OH)]I2.cntdot.2H2O, [L2Re2I2(.mu.-O)2]I2.cntdot.2H2O, and [L'2Re2Cl4(.mu.-O)]ZnCl4. Effect , 1991 .

[9]  J. Zubieta,et al.  Structure of [LFe(μ‐MoO4)3FeL].CH2Cl2.H2O (L = 1,4,7‐trimethyl‐1,4,7‐triazacyclononane) , 1991 .

[10]  K. Wieghardt,et al.  Syntheses and crystal structures of complexes [L′O(H2O)V(µ-O)WO2L]Cl(ClO4) and [L′(acac)MoIII(µ-O)MoVIO2L′][BPh4]2(L,L′= 1,4,7-triazacyclononane and its 1,4,7-trimethyl derivative; acac = pentane-2,4-dionate) , 1991 .

[11]  K. Wieghardt,et al.  Co-ordination chemistry of 1,4,7-triazacyclononane (L) and its N-methylated derivative (L′) with silver(I) and mercury(II). The crystal structures of [AgL′2]PF6 and [AgL′(SCN)] , 1991 .

[12]  K. Hagen,et al.  (MU -OXO/HYDROXO)BIS(MU -CARBOXYLATO)DIIRON(III) AND -DIMANGANESE(III) COMPLEXES WITH CAPPING TRIS(IMIDAZOL-2-YL)PHOSPHINE LIGANDS , 1990 .

[13]  V. Lynch,et al.  Model studies related to hemerythrin. Synthesis and characterization of a bridged tetranuclear iron(III) complex , 1990 .

[14]  H. Tønnesen,et al.  Synthesis and Magnetic Properties of a mu-Oxo-di(mu-acetato)manganese(III) Complex of a Strapped Tripodal Pyridylamine Ligand N,N,N',N'-Tetrakis(2-pyridylmethyl)-1,3-propanediamine. A Model for the Mn2 Site of Mn-Catalase Enzymes. , 1990 .

[15]  K. Wieghardt,et al.  The missing link in the series [L2MIII2(µ-O)(µ-MeCO2)2]2+(M = Ti, V, Cr, Mn, Fe). Synthesis, crystal structure and magnetism of [L2CrIII2(µ-O)(µ-MeCO2)2][BPh4]2 , 1990 .

[16]  Karl Wieghardt,et al.  The Active Sites in Manganese‐Containing Metalloproteins and Inorganic Model Complexes , 1989 .

[17]  R. Prince,et al.  The manganese site of the photosynthetic water-splitting enzyme. , 1989, Science.

[18]  Karl Wieghardt,et al.  Synthesis, crystal structures, reactivity, and magnetochemistry of a series of binuclear complexes of manganese(II), -(III), and -(IV) of biological relevance. The crystal structure of [L'MnIV(.mu.-O)3MnIVL'](PF6)2.H2O containing an unprecedented short Mn.cntdot..cntdot..cntdot.Mn distance of 2.296 , 1988 .

[19]  Vincenzo Balzani,et al.  Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence , 1988 .

[20]  G. Renger Biological Exploitation of Solar Energy by Photosynthetic Water Splitting , 1987 .

[21]  S. Lippard,et al.  Binuclear Manganese(III) Complexes of Potential Biological Significance , 1987 .

[22]  K. Wieghardt,et al.  Säure-Base-Eigenschaften des zyklischen Triamins N,N′,N″-Trimethyl-1,4,7-triazacyclononan: Die Kristallstruktur seiner monoprotonierten Form [C9H22N3]ClO4) / Acid-Base Properties of the Cyclic Triamine N,N′,N″-Trimethyl-1,4,7-triazacyclononane and Crystal Structure of its Monoprotonated Form [C9H22N , 1987 .

[23]  G. Weisman,et al.  Selective N-protection of medium-ring triamines , 1987 .

[24]  G. Dismukes THE METAL CENTERS OF THE PHOTOSYNTHETIC OXYGEN‐EVOLVING COMPLEX * , 1986 .

[25]  A. Lever,et al.  Relationships between electronic spectroscopy and electrochemistry. A probe of reorganisation energies , 1985 .

[26]  A. Lever,et al.  Correlations between Electrochemical Potentials and Optical Charge Transfer Energies in Ruthenium Bipyridine Derivatives. , 1985 .

[27]  K. Wieghardt,et al.  Assembly and structural characterization of binuclear µ-oxo-di-µ-acetato bridged complexes of manganese(III). Analogues of the di-iron(III) centre in hemerythrin , 1985 .

[28]  K. Wieghardt,et al.  Synthesis of a Tetranuclear Manganese(IV) Cluster with Adamantane Skeleton: [(C6H15N3)4Mn4O6]4+ , 1983 .

[29]  K. Wieghardt,et al.  New triply hydroxo-bridged complexes of chromium(III), cobalt(III), and rhodium(III): crystal structure of tris(.mu.-hydroxo)bis[(1,4,7-trimethyl-1,4,7-triazacyclononane)chromium(III)] triiodide trihydrate , 1982 .

[30]  J. Wuest,et al.  Transfer of hydrogen from orthoamides. Synthesis, structure, and reactions of hexahydro-6bH-2a,4a,6a-triazacyclopenta[cd]pentalene and perhydro-3a,6a,9a-triazaphenalene , 1980 .

[31]  J. Jasinski,et al.  Reactions of Sodium Borohydride in Acidic Media; VIII. N-Alkylation of Aliphatic Secondary Amines with Carboxylic Acids , 1978 .

[32]  Keiji Matsumoto,et al.  Synthesis and X-Ray Structure of Triethylenetetramine-palladium(II) Complex , 1977 .

[33]  L. J. Zompa,et al.  Metal complexes of cyclic triamines. 1. Complexes of 1,4,7-triazacyclononane ([9]aneN3) with nickel(II), copper(II), and zinc(II) , 1976 .

[34]  G. Liso,et al.  Sodium borohydride-carboxylic acid systems. Useful reagents for the alkylation of amines , 1975 .

[35]  J. Skotnicki,et al.  Reactions of sodium borohydride in acidic media. I. Reduction of indoles and alkylation of aromatic amines with carboxylic acids , 1974 .

[36]  J. Richman,et al.  NITROGEN ANALOGS OF CROWN ETHERS , 1974 .

[37]  G. D. Rieck,et al.  International tables for X-ray crystallography , 1962 .

[38]  H. Clarke,et al.  The Action of Formaldehyde on Amines and Amino Acids1 , 1933 .

[39]  W. Eschweiler Ersatz von an Stickstoff gebundenen Wasserstoffatomen durch die Methylgruppe mit Hülfe von Formaldehyd , 1905 .