Efficient coding schemes for the hard-square model

The hard-square model, also known as the two-dimensional (2-D) (1, /spl infin/)-RLL constraint, consists of all binary arrays in which the 1's are isolated both horizontally and vertically. Based on a certain probability measure defined on those arrays, an efficient variable-to-fixed encoder scheme is presented that maps unconstrained binary words into arrays that satisfy the hard-square model. For sufficiently large arrays, the average rate of the encoder approaches a value which is only 0.1% below the capacity of the constraint. A second, fixed-rate encoder is presented whose rate for large arrays is within 1.2% of the capacity value.

[1]  D. K. Pickard A curious binary lattice process , 1977, Journal of Applied Probability.

[2]  Robert L. Berger The undecidability of the domino problem , 1966 .

[3]  B. Marcus Constrained Systems and Coding for Recording Channels, in Handbook of Coding Theory, v. Finite-state Modulation Codes for Data Storage, Ieee , 2000 .

[4]  Richard E. Blahut,et al.  The Capacity and Coding Gain of Certain Checkerboard Codes , 1998, IEEE Trans. Inf. Theory.

[5]  Demetri Psaltis Holographic memories , 1996, International Commission for Optics.

[6]  L Hesselink,et al.  Volume Holographic Storage and Retrieval of Digital Data , 1994, Science.

[7]  Hisashi Ito,et al.  Zero capacity region of multidimensional run length constraints , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[8]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[9]  Lalit R. Bahl,et al.  Block Codes for a Class of Constrained Noiseless Channels , 1970, Inf. Control..

[10]  R. Robinson Undecidability and nonperiodicity for tilings of the plane , 1971 .

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  Brian H. Marcus,et al.  Finite-State Modulation Codes for Data Storage , 2004 .

[13]  D. Psaltis,et al.  Control of volume holograms , 1992 .

[14]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[15]  J. Steif,et al.  Non-uniqueness of measures of maximal entropy for subshifts of finite type , 1994, Ergodic Theory and Dynamical Systems.

[16]  Steven W. McLaughlin,et al.  An enumerative method for runlength-limited codes: permutation codes , 1999, IEEE Trans. Inf. Theory.

[17]  Lambertus Hesselink,et al.  Channel codes for digital holographic data storage , 1995 .

[18]  Thomas M. Cover,et al.  Enumerative source encoding , 1973, IEEE Trans. Inf. Theory.

[19]  Kenneth Zeger,et al.  Capacity bounds for the three-dimensional (0, 1) run length limited channel , 2000, IEEE Trans. Inf. Theory.

[20]  Kees Schouhamer-Immink Coding Techniques for Digital Recorders , 1991 .

[21]  Jørn Justesen,et al.  Entropy Bounds for Constrained Two-Dimensional Random Fields , 1999, IEEE Trans. Inf. Theory.

[22]  J. Wolf,et al.  Bit-stuffing bounds on the capacity of 2-dimensional constrained arrays , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[23]  Kenneth Zeger,et al.  Capacity Bounds for the 3-Dimensional (0, 1) Runlength Limited Channel , 1999, AAECC.

[24]  Herbert S. Wilf,et al.  The Number of Independent Sets in a Grid Graph , 1998, SIAM J. Discret. Math..

[25]  D. Slepian Permutation Modulation , 1965, Encyclopedia of Wireless Networks.

[26]  Kenneth Zeger,et al.  On the capacity of two-dimensional run-length constrained channels , 1999, IEEE Trans. Inf. Theory.

[27]  Jørn Justesen,et al.  Simple models of two-dimensional information sources and codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[28]  M A Neifeld,et al.  Optical memory disks in optical information processing. , 1990, Applied optics.

[29]  J. Keil Wolf Permutation codes, (d,k) codes and magnetic recording , 1990 .