Control method for voltage-source-type unit power factor high-temperature superconducting energy storage converter

The invention belongs to the field of applied superconducting power electronics, and in particular relates to a synchronizing current and voltage decoupling control method of a voltage-source-type unit power factor high-temperature superconducting energy storage system converter. The control method is characterized by comprising the following steps: designing a voltage outer ring control module at a direct-current side and a current inner ring control module at an alternating-current side respectively with respect to a mathematical model of a superconducting energy storage system converter under dq synchronizing rotary coordinates; controlling an 'H'-shaped bidirectional DC-DC (direct-current to direct-current) chopper based on an SPWM (sinusoidal pulse width modulation) technology by adopting a hysteresis loop PI current closed-loop control method in a charge mode and a hysteresis loop PI voltage closed-loop control method in a discharge mode; and finally implementing the synchronizing current and voltage double-fed control method of a voltage-source-type SMES (superconducting energy storage system) converter according to the active current requirement and the current value of a superconducting magnet under the power grid unit power factor. The control method provided by the invention has the advantages of multi-stage current decoupling control, rapid response speed, easy implementation of control algorithm and the like, and the method is especially suitable for the application occasions for improving the electricity energy quality of a power grid and inhibiting the low-frequency oscillation of a power system and the like.