Multi-agent simulations and ecosystem management : a review

This paper proposes a review of the development and use of multi-agent simulations (MAS) for ecosystem management. The use of this methodology and the associated tools accompanies the shifts in various paradigms on the study of ecological complexity. Behavior and interactions are now key issues for understanding and modeling ecosystem organization, and models are used in a constructivist way. MAS are introduced conceptually and are compared with individual-based modeling approaches. Various architectures of agents are presented, the role of the environment is emphasized and some computer tools are presented. A discussion follows on the use of MAS for ecosystem management. The strength of MAS has been discussed for social sciences and for spatial issues such as land-use change. We argue here that MAS are useful for problems integrating social and spatial aspects. Then we discuss how MAS can be used for several purposes, from theorization to collective decision-making support. We propose some research perspectives on individual decision making processes, institutions, scales, the credibility of models and the use of MAS. In conclusion we argue that researchers in the field of ecosystem management can use multi-agent systems to go beyond the role of the individual and to study more deeply and more effectively the different forms of organization (spatial, networks, hierarchies) and interactions among different organizational levels. For that objective there is considerably more fruit to be had on the tree of collaboration between social, ecological, and computer scientists than has so far been harvested. © 2004 Elsevier B.V. All rights reserved.

[1]  Jean Benoîst Chabrol,et al.  Théorie générale des systèmes , 1973 .

[2]  Robert M. May,et al.  Stability and Complexity in Model Ecosystems , 2019, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  R. L. Welcomme,et al.  Fisheries ecology of floodplain rivers , 1974 .

[4]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[5]  Peter Checkland,et al.  Systems Thinking, Systems Practice , 1981 .

[6]  Thomas B. Starr,et al.  Hierarchy: Perspectives for Ecological Complexity , 1982 .

[7]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[8]  Paulien Hogeweg,et al.  Mirror Beyond Mirror: Puddles of Life , 1987, ALIFE.

[9]  Peter Oppenheimer The Artificial Menagerie , 1987, ALIFE.

[10]  C. Mullon,et al.  An environmental modelling approach : the use of multi-agent simulations , 1988 .

[11]  D. DeAngelis,et al.  New Computer Models Unify Ecological TheoryComputer simulations show that many ecological patterns can be explained by interactions among individual organisms , 1988 .

[12]  J. Deneubourg,et al.  Collective patterns and decision-making , 1989 .

[13]  William E. Grant,et al.  AI modelling of animal movements in a heterogeneous habitat , 1989 .

[14]  Monica G. Turner,et al.  Methods to evaluate the performance of spatial simulation models , 1989 .

[15]  P. Hogeweg,et al.  Individual-oriented modelling in ecology , 1990 .

[16]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[17]  J. Roese,et al.  Habitat heterogeneity and foraging efficiency: an individual-based model , 1991 .

[18]  Christopher G. Langton,et al.  Life at the Edge of Chaos , 1992 .

[19]  T. Allen,et al.  Toward a Unified Ecology. , 1994 .

[20]  F Villa,et al.  New computer architectures as tools for ecological thought. , 1992, Trends in ecology & evolution.

[21]  D. DeAngelis,et al.  Individual-Based Models and Approaches in Ecology , 1992 .

[22]  W. Wilson,et al.  Dynamics of Age-Structured and Spatially Structured Predator-Prey Interactions: Individual-Based Models and Population-Level Formulations , 1993, The American Naturalist.

[23]  A. Drogoul De la simulation multi-agents a la resolution collective de problemes : une etude de l'emergence de structures d'organisation dans les systemes multi-agents , 1993 .

[24]  Christophe Cambier,et al.  SIMULATING THE INTERACTION BETWEEN A SOCIETY AND A RENEWABLE RESOURCE , 1993 .

[25]  W. Wilson,et al.  Spatial Instabilities within the Diffusive Lotka-Volterra System: Individual-Based Simulation Results , 1993 .

[26]  William Silvert,et al.  Object-oriented ecosystem modelling , 1993 .

[27]  J. Lansing,et al.  Emergent Properties of Balinese Water Temple Networks: Coadaptation on a Rugged Fitness Landscape , 1993 .

[28]  Carlo C. Maley,et al.  Implementing i-state configuration models for population dynamics: an object-oriented programming approach , 1993 .

[29]  K. Mäler,et al.  Modeling Complex Ecological Economic Systems: Toward an Evolutionary, Dynamic Understanding of People and Nature , 1993 .

[30]  François Bousquet,et al.  Distributed artificial intelligence and object-oriented modelling of a fishery , 1994 .

[31]  R. Durrett,et al.  The Importance of Being Discrete (and Spatial) , 1994 .

[32]  Gérard Weisbuch,et al.  Complex Systems Dynamics , 1994 .

[33]  Crawford S. Holling Simplifying the complex: The paradigms of ecological function and structure , 1994 .

[34]  Y Toquenaga,et al.  Frpm artificial individuals to global patterns. , 1994, Trends in ecology & evolution.

[35]  Randy Gimblett,et al.  A role for goal-oriented autonomous agents in modeling people-environment interactions in forest recreation , 1994 .

[36]  Stéphane Bura,et al.  MINIMEME: of life and death in the noosphere , 1994 .

[37]  E. Bonabeau,et al.  Why do we need artificial life , 1994 .

[38]  O P Judson,et al.  The rise of the individual-based model in ecology. , 1994, Trends in ecology & evolution.

[39]  Nigel Gilbert,et al.  Emergence in social simulation , 1995 .

[40]  Jacques Ferber,et al.  Les Systèmes multi-agents: vers une intelligence collective , 1995 .

[41]  L. Tesfatsion HOW ECONOMISTS CAN GET ALIFE , 1995 .

[42]  E. Perrier,et al.  Une approche multi-agents pour simuler les interactions entre des acteurs hétérogènes de l'infiltration et du ruissellement d'eau sur une surface de sol , 1996 .

[43]  Nelson Minar,et al.  The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations , 1996 .

[44]  N. Röling Towards an interactive agricultural science , 1996 .

[45]  Modelisation et simulation de la dynamique d'une population d'agents , 1996 .

[46]  Joshua M. Epstein,et al.  Growing artificial societies , 1996 .

[47]  Michael P. Wellman,et al.  Market-oriented programming: some early lessons , 1996 .

[48]  W. Wilson Lotka's game in predator-prey theory: linking populations to individuals. , 1996, Theoretical population biology.

[49]  P. Rep,et al.  Individual-based modelling in ecology: what makes the difference? , 1996 .

[50]  P. Cury,et al.  Population viability and spatial fish reproductive strategies in constant and changing environments: an individual-based modelling approach , 1997 .

[51]  S. Levin,et al.  Scaling from Trees to Forests: Analysis of a Complex Simulation Model , 1997 .

[52]  Jack P. C. Kleijnen,et al.  Experimental Design for Sensitivity Analysis, Optimization and Validation of Simulation Models , 1997 .

[53]  Friedrich Krebs,et al.  Emergent value orientation in self-organization of an animat , 1997 .

[54]  Terry Jones,et al.  The Ecology of Echo , 1997, Artificial Life.

[55]  David Hales Modelling Meta-Memes , 1997 .

[56]  A. Balmann Farm-Based Modelling of Regional Structural Change: A Cellular Automata Approach , 1997 .

[57]  Takashi Ikegami,et al.  Emergence of Collective Strategies in a Prey-Predator Game Model , 1997, Artificial Life.

[58]  T. Keitt Stability and Complexity on a Lattice: Coexistence of Species in an Individual-Based Food Web Model , 1997 .

[59]  Robert Axelrod Advancing the art of simulation in the social sciences , 1997 .

[60]  F. Müller State-of-the-art in ecosystem theory , 1997 .

[61]  Nigel Gilbert,et al.  Multi-Agent Systems and Agent-Based Simulation , 1998, Lecture Notes in Computer Science.

[62]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[63]  C. Baeijs Fonctionnalite emergente dans une societe d'agents autonomes , 1998 .

[64]  H. Van Dyke Parunak,et al.  Agent-Based Modeling vs. Equation-Based Modeling: A Case Study and Users' Guide , 1998, MABS.

[65]  J. F. Derry Modelling ecological interaction despite object-oriented modularity , 1998 .

[66]  Alexis Drogoul,et al.  When Agents Emerge from Agents: Introducing Multi-scale Viewpoints in Multi-agent Simulations , 1998, MABS.

[67]  Y. Demazeau,et al.  Systèmes multi-agents réactifs et résolution de problèmes spatialisés , 1998 .

[68]  Christophe Le Page,et al.  Cormas: Common-Pool Resources and Multi-agent Systems , 1998, IEA/AIE.

[69]  Robert M. Itami,et al.  A complex systems approach to simulating human behaviour using synthetic landscapes , 1998 .

[70]  Marcus Janssen,et al.  The battle of perspectives: a multi-agent model with adaptive responses to climate change , 1998 .

[71]  Florence Le Ber,et al.  Simuler l'organisation d'un territoire agricole : différentes approches , 1998 .

[72]  G. Booth,et al.  BacSim, a simulator for individual-based modelling of bacterial colony growth. , 1998, Microbiology.

[73]  Alain Karsenty,et al.  Economic Theory of Renewable Resource Management: A Multi-Agent System Approach , 1998, MABS.

[74]  F. Guerrin,et al.  Biomas : un modèle multi-agents pour aider à la gestion négociée d'effluents d'élevage , 1999 .

[75]  S. Carpenter,et al.  Managing the Resilience of Lakes: A Multi-agent Modeling Approach , 1999 .

[76]  A. Łomnicki Individual-based models and the individual-based approach to population ecology , 1999 .

[77]  V. Grimm Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? , 1999 .

[78]  Jacques Ferber,et al.  Multi-agent systems - an introduction to distributed artificial intelligence , 1999 .

[79]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[80]  J. Castella,et al.  Implementing the ecoregional approach in the Red River Basin uplands (Vietnam). Mountain Agricultural Systems (SAM) project , 1999 .

[81]  Michael Sonnenschein,et al.  Modelling and simulation software to support individual-based ecological modelling , 1999 .

[82]  Volker Grimm,et al.  Individual-based modelling and ecological theory: synthesis of a workshop , 1999 .

[83]  Gerhard Weiss,et al.  Multiagent systems: a modern approach to distributed artificial intelligence , 1999 .

[84]  Christophe Le Page,et al.  Entités spatiales génériques et modèles de simulation multi-agent (poster) , 1999, JFIADSMA.

[85]  Edella Schlager,et al.  Simulating Common Pool Resource Management Experiments with Adaptive Agents Employing Alternate Communication Routines , 2000, J. Artif. Soc. Soc. Simul..

[86]  Timothy A. Kohler,et al.  Be there then: a modeling approach to settlement determinants and spatial efficiency among late ancestral pueblo populations of the Mesa Verde region, U.S. southwest , 2000 .

[87]  G. Hutzler Du Jardin des Hasards aux Jardins de Données : une approche artistique et Multi-Agent des Interfaces Homme/Systèmes Complexes , 2000 .

[88]  Joshua M. Epstein,et al.  Understanding Anasazi culture change through agent-based modeling , 2000 .

[89]  F. Menczer,et al.  Co-evolution of movement behaviours by tropical pelagic predatory fishes in response to prey environment: a simulation model , 2000 .

[90]  J. Pepper,et al.  The evolution of cooperation in an ecological context: an agent based model , 2000 .

[91]  Robert L. Axtell,et al.  WHY AGENTS? ON THE VARIED MOTIVATIONS FOR AGENT COMPUTING IN THE SOCIAL SCIENCES , 2000 .

[92]  Fabrice Kordon,et al.  Formalization of a Spatialized Multiagent Model Using Coloured Petri Nets for the Study of an Hunting Management System , 2000, FAABS.

[93]  B. C. Patten,et al.  Ecosystems emerging:: 4. growth , 2000 .

[94]  Gerhard Weiss,et al.  Multiagent Systems and Societies of Agents , 2000 .

[95]  Yunne Shin Interactions trophiques et dynamiques des populations dans les écosystèmes marins exploités : approche par modélisation individus-centrée , 2000 .

[96]  Timothy A. Kohler,et al.  Dynamics in human and primate societies: agent-based modeling of social and spatial processes , 2000 .

[97]  François Bousquet,et al.  SHADOC: a multi‐agent model to tackle viability of irrigated systems , 2000, Ann. Oper. Res..

[98]  François Bousquet,et al.  Multiagent simulations of hunting wild meat in a village in eastern Cameroon , 2001 .

[99]  R. Riolo,et al.  Evolution of cooperation without reciprocity , 2001, Nature.

[100]  Nicholas Mark Gotts,et al.  IMITATIVE VERSUS NONIMITATIVE STRATEGIES IN A LAND-USE SIMULATION , 2001, Cybern. Syst..

[101]  O. Thébaud,et al.  Modelling the emergence of resource-sharing conventions: an agent-based approach , 2001, J. Artif. Soc. Soc. Simul..

[102]  François Bousquet,et al.  A Multi-Agent Model for Describing Transhumance in North Cameroon: Comparison of Different Rationality to Develop a Routine , 2001 .

[103]  François Bousquet,et al.  Role-playing games for opening the black box of multi-agent systems: method and lessons of its application to Senegal River Valley irrigated systems , 2001, J. Artif. Soc. Soc. Simul..

[104]  François Bousquet,et al.  The creation of a reputation in an artificial society organised by a gift system , 2001, J. Artif. Soc. Soc. Simul..

[105]  E. Lambin,et al.  Predicting land-use change , 2001 .

[106]  David R. C. Hill,et al.  Multi-agent simulation of group foraging in sheep: effects of spatial memory, conspecific attraction and plot size , 2001 .

[107]  Christophe Le Page,et al.  A multi-agents architecture to enhance end-user individual-based modelling , 2002 .

[108]  François Bousquet,et al.  A novel mediating participatory modelling: the self-design process to accompany collective decision making , 2002 .

[109]  M. Hare,et al.  Stakeholder Categorisation in Participatory Integrated Assessment Processes , 2002 .

[110]  Olivier Barreteau,et al.  Multi-agent systems and role games : collective learning processes for ecosystem management , 2002 .

[111]  François Bousquet,et al.  Adapting Science to Adaptive Managers: Spidergrams, Belief Models, and Multi-agent Systems Modeling , 2002 .

[112]  M. Janssen,et al.  Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review , 2003 .

[113]  Christophe Le Page,et al.  Agent based simulation of a small catchment water management in northern Thailand: Description of the CATCHSCAPE model , 2003 .

[114]  François Bousquet,et al.  Agent-based simulations of interactions between duck population, farming decisions and leasing of hunting rights in the Camargue (Southern France) , 2003 .

[115]  François Bousquet,et al.  SINUSE: a multi-agent model to negotiate water demand management on a free access water table , 2003, Environ. Model. Softw..

[116]  Ira Rudowsky,et al.  Intelligent Agents , 2004, Commun. Assoc. Inf. Syst..

[117]  M. Lallement Économie et société , 2004 .

[118]  P. Hogeweg,et al.  The ontogeny of the interaction structure in bumble bee colonies: A MIRROR model , 1983, Behavioral Ecology and Sociobiology.

[119]  Dave Cliff,et al.  Creatures: Entertainment Software Agents with Artificial Life , 2004, Autonomous Agents and Multi-Agent Systems.