Testing gravity on large scales by combining weak lensing with galaxy clustering using CFHTLenS and BOSS CMASS

We measure a combination of gravitational lensing, galaxy clustering, and redshift-space distortions called $E_G$. The quantity $E_G$ probes both parts of metric potential and is insensitive to galaxy bias and $\sigma_8$. These properties make it an attractive statistic to test $\Lambda$CDM, General Relativity and its alternate theories. We have combined CMASS DR11 with CFHTLenS and recent measurements of $\beta$ from RSD analysis, and find $E_G(z = 0.57) = 0.42 \pm 0.056$, an 13\% measurement in agreement with the prediction of general relativity $E_G(z = 0.57) = 0.396 \pm 0.011$ using the Planck 2015 cosmological parameters. We have corrected our measurement for various observational and theoretical systematics. Our measurement is consistent with the first measurement of $E_G$ using CMB lensing in place of galaxy lensing (Pullen et. al. 2015a) at small scales, but shows 2.8$\sigma$ tension when compared with their final results including large scales. This analysis with future surveys will provide improved statistical error and better control over systematics to test General Relativity and its alternate theories.

[1]  J. Hill,et al.  Constraining Multiplicative Bias in CFHTLenS Weak Lensing Shear Data , 2016, 1601.05720.

[2]  Shirley Ho,et al.  Constraining gravity at the largest scales through CMB lensing and galaxy velocities , 2015, 1511.04457.

[3]  C. Heymans,et al.  Testing gravity with EG: mapping theory onto observations , 2015, 1510.04287.

[4]  David Schlegel,et al.  SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large-scale structure catalogues , 2015, 1509.06529.

[5]  W. Percival,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: mock galaxy catalogues for the BOSS Final Data Release , 2015, 1509.06400.

[6]  C. Heymans,et al.  RCSLenS: testing gravitational physics through the cross-correlation of weak lensing and large-scale structure , 2015, 1507.03086.

[7]  R. Mandelbaum,et al.  Mapping stellar content to dark matter haloes using galaxy clustering and galaxy–galaxy lensing in the SDSS DR7 , 2015, 1505.02781.

[8]  Alina Kiessling,et al.  Galaxy Alignments: An Overview , 2015, 1504.05456.

[9]  J. Blazek,et al.  Tidal alignment of galaxies , 2015, 1504.02510.

[10]  S. Ho,et al.  Testing general relativity with growth rate measurement from Sloan Digital Sky Survey – III. Baryon Oscillations Spectroscopic Survey galaxies , 2015, 1504.02100.

[11]  Jeremy Sakstein Astrophysical Tests of Modified Gravity , 2015, 1502.04503.

[12]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[13]  S. Ho,et al.  Probing gravity at large scales through CMB lensing , 2014, 1412.4454.

[14]  S. More,et al.  Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies , 2014, 1411.1755.

[15]  Romain Teyssier,et al.  Baryonic effects on weak-lensing two-point statistics and its cosmological implications , 2014, 1410.6826.

[16]  Mustapha Ishak,et al.  The Intrinsic Alignment of Galaxies and its Impact on Weak Gravitational Lensing in an Era of Precision Cosmology , 2014, 1407.6990.

[17]  J. Brownstein,et al.  THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. II. ASTROPHYSICAL AND COSMOLOGICAL CONSTRAINTS , 2014, 1407.1856.

[18]  P. Mcdonald,et al.  Understanding Higher-Order Nonlocal Halo Bias at Large Scales by Combining the Power Spectrum with the Bispectrum , 2014, 1405.1447.

[19]  J. Loveday,et al.  Galaxy And Mass Assembly (GAMA): the halo mass of galaxy groups from maximum-likelihood weak lensing , 2014, 1404.6828.

[20]  Alexie Leauthaud,et al.  A 2.5 per cent measurement of the growth rate from small-scale redshift space clustering of SDSS-III CMASS galaxies , 2014, 1404.3742.

[21]  J. Kneib,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS anisotropic galaxy clustering , 2013, 1312.4889.

[22]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing gravity with redshift-space distortions using the power spectrum multipoles , 2013, 1312.4611.

[23]  J. Brinkmann,et al.  THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. I. MEASUREMENTS , 2013, 1311.1480.

[24]  H. Hoekstra,et al.  CFHTLenS: co-evolution of galaxies and their dark matter haloes , 2013, 1310.6784.

[25]  B. Reid,et al.  An analytic model for redshift-space distortions , 2013, 1306.1804.

[26]  H. Hoekstra,et al.  CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing , 2013, 1304.4265.

[27]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[28]  G. W. Pratt,et al.  Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.

[29]  D. Wake,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring DA and H at z = 0.57 from the baryon acoustic peak in the data release 9 spectroscopic galaxy sample , 2013, 1303.4666.

[30]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological constraints from the full shape of the clustering wedges , 2013, 1303.4396.

[31]  G. Zamorani,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) - Galaxy clustering and redshift-space distortions at z ≃ 0.8 in the first data release , 2013, 1303.2622.

[32]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[33]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[34]  H. Hoekstra,et al.  Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.

[35]  Stefan Hilbert,et al.  COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. I. JOINT CONSTRAINTS ON ΩM AND σ8 WITH A TWO-DIMENSIONAL ANALYSIS , 2012, 1210.2732.

[36]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[37]  B. Reid,et al.  Convolution Lagrangian perturbation theory for biased tracers , 2012, 1209.0780.

[38]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[39]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[40]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[41]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[42]  A. Slosar,et al.  Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7 , 2012, 1207.1120.

[43]  S. More,et al.  Cosmological Constraints from a Combination of Galaxy Clustering and Lensing -- III. Application to SDSS Data , 2012, 1207.0503.

[44]  S. More,et al.  Cosmological Constraints from a Combination of Galaxy Clustering & Lensing - II. Fisher Matrix Analysis , 2012, 1207.0004.

[45]  S. More,et al.  Cosmological constraints from a combination of galaxy clustering and lensing – I. Theoretical framework , 2012, 1206.6890.

[46]  Will Saunders,et al.  The 6dF Galaxy Survey: z \approx 0 measurement of the growth rate and sigma_8 , 2012, 1204.4725.

[47]  R. Mandelbaum,et al.  Separating intrinsic alignment and galaxy-galaxy lensing , 2012, 1204.2264.

[48]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:a large sample of mock galaxy catalogues , 2012, 1203.6609.

[49]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics , 2012, 1203.6499.

[50]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[51]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[52]  Hong Guo,et al.  A NEW METHOD TO CORRECT FOR FIBER COLLISIONS IN GALAXY TWO-POINT STATISTICS , 2011, 1111.6598.

[53]  H. Hoekstra,et al.  CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.

[54]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[55]  Gong-Bo Zhao,et al.  Testing gravity with CAMB and CosmoMC , 2011, 1106.4543.

[56]  B. Reid,et al.  Towards an accurate model of the redshift-space clustering of haloes in the quasi-linear regime , 2011, 1105.4165.

[57]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[58]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[59]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[60]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[61]  E. Anderson Problem of time in quantum gravity , 2010, 1206.2403.

[62]  University College London,et al.  Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample , 2010, 1008.3491.

[63]  Rachel Mandelbaum,et al.  Confirmation of general relativity on large scales from weak lensing and galaxy velocities , 2010, Nature.

[64]  Mamoru Doi,et al.  PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.

[65]  A. Szalay,et al.  THE BARYONIC ACOUSTIC FEATURE AND LARGE-SCALE CLUSTERING IN THE SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXY SAMPLE , 2010 .

[66]  T. Kitching,et al.  The dark matter of gravitational lensing , 2010, 1001.1739.

[67]  R. Mandelbaum,et al.  Algorithm for the direct reconstruction of the dark matter correlation function from weak lensing and galaxy clustering , 2009, 0911.4973.

[68]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[69]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[70]  H. Hoekstra,et al.  Weak Gravitational Lensing and Its Cosmological Applications , 2008, 0805.0139.

[71]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[72]  Scott Dodelson,et al.  Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity. , 2007, Physical review letters.

[73]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[74]  R. Nichol,et al.  Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: luminosity and redshift scalings and implications for weak lensing surveys , 2007, astro-ph/0701671.

[75]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[76]  K. Koyama Structure formation in modified gravity models , 2006, astro-ph/0601220.

[77]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[78]  H. Hoekstra,et al.  The Shear Testing Programme – I. Weak lensing analysis of simulated ground-based observations , 2005, astro-ph/0506112.

[79]  G. Huetsi,et al.  Clustering of SZ clusters on a past light-cone: acoustic oscillations and constraints on dark energy , 2005, astro-ph/0505441.

[80]  J. Brinkmann,et al.  Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing , 2005, astro-ph/0501201.

[81]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[82]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[83]  R. Scoccimarro Redshift-space distortions, pairwise velocities and nonlinearities , 2004, astro-ph/0407214.

[84]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: spherical harmonics analysis of fluctuations in the final catalogue , 2004, astro-ph/0406513.

[85]  U. Seljak,et al.  Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.

[86]  A. Connolly,et al.  The Galaxy-Mass Correlation Function Measured from Weak Lensing in the Sloan Digital Sky Survey , 2003, astro-ph/0312036.

[87]  A. Réfrégier Weak Gravitational Lensing by Large-Scale Structure , 2003, astro-ph/0307212.

[88]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[89]  J. Bagla TreePM: A code for cosmological N-body simulations , 1999, astro-ph/9911025.

[90]  Ž. Ivezić,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[91]  R. Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[92]  M. White,et al.  Simulating the Sunyaev-Zeldovich Effect(s): Including Radiative Cooling and Energy Injection by Galactic Winds , 2002, astro-ph/0205437.

[93]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[94]  M. White,et al.  The Halo Model and Numerical Simulations , 2000, astro-ph/0012518.

[95]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[96]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[97]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[98]  Denmark,et al.  The nature of galaxy bias and clustering , 1999, astro-ph/9903343.

[99]  Robert Lupton,et al.  A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.

[100]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[101]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[102]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[103]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[104]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[105]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[106]  A. Hamilton Measuring Omega and the real correlation function from the redshift correlation function , 1992 .

[107]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[108]  V. Rubin,et al.  Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions , 1970 .

[109]  F. Kahn,et al.  Intergalactic Matter and the Galaxy. , 1959 .

[110]  F. Zwicky On the Masses of Nebulae and of Clusters of Nebulae , 1937 .

[111]  K. Koyama Ja n 20 06 Structure formation in modified gravity models alternative to dark energy , 2008 .