ECm And The Elliott-Halberstam Conjecture For Quadratic Fields

The complexity of the elliptic curve method of factorization (ECM) is proven under a strong conjectural form of existence of friable numbers in short intervals. In the present work we use friability to tackle a different version of ECM which is much more studied and implemented, especially because it enables the use of ECM-friendly curves. In the case of curves with complex multiplication (CM) we replace heuristic arguments by rigorous results conditional on the Elliott–Halberstam (EH) conjecture. The proven results mirror recent work concerning the count of primes p such that p − 1 is friable. In the case of non CM curves, we explore consequences of a hypothetical statement that can be seen as an elliptic curve analogue of EH.

[1]  A. Languasco ON COMPUTING L ′ / L ( 1 , χ , 2022 .

[2]  Jie Wu,et al.  Primes in arithmetic progressions with friable indices , 2020, Science China Mathematics.

[3]  R. Barbulescu,et al.  A classification of ECM-friendly families using modular curves , 2019 .

[4]  R. de la Bretèche,et al.  Entiers friables dans des progressions arithmétiques de grand module , 2015, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  Zhiwei Wang Autour des plus grands facteurs premiers d’entiers consÉcutifs voisins d’un entier criblÉ , 2018 .

[6]  Razvan Barbulescu,et al.  Some mathematical remarks on the polynomial selection in NFS , 2014, Math. Comput..

[7]  P. Pollack A Titchmarsh divisor problem for elliptic curves , 2015, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  G. Tenenbaum,et al.  NOTE SUR LES VALEURS MOYENNES CRIBLÉES DE CERTAINES FONCTIONS ARITHMÉTIQUES , 2015 .

[9]  Yitang Zhang Small gaps between primes , 2015 .

[10]  Arjen K. Lenstra,et al.  Cofactorization on Graphics Processing Units , 2014, CHES.

[11]  Yitang Zhang Bounded gaps between primes , 2014 .

[12]  Chantal David,et al.  Pseudoprime Reductions of Elliptic Curves , 2010, Canadian Journal of Mathematics.

[13]  Peter Stevenhagen,et al.  The number field sieve , 2008 .

[14]  Frederik Vercauteren,et al.  Faster Interleaved Modular Multiplication Based on Barrett and Montgomery Reduction Methods , 2010, IEEE Transactions on Computers.

[15]  P. L. Clark,et al.  Torsion points on elliptic curves with complex multiplication , 2009, 0907.2499.

[16]  G. Tenenbaum,et al.  Moyennes de certaines fonctions multiplicatives sur les entiers friables, 2 , 2008 .

[17]  K. Rubin,et al.  Point counting on reductions of CM elliptic curves , 2007, 0706.3711.

[18]  Igor A. Semaev,et al.  An Algorithm to Solve the Discrete Logarithm Problem with the Number Field Sieve , 2006, Public Key Cryptography.

[19]  Emmanuel Kowalski,et al.  Analytic problems for elliptic curves , 2005, math/0510197.

[20]  E. Saias,et al.  On ideals free of large prime factors , 2004 .

[21]  G. Tenenbaum,et al.  Moyennes de certaines fonctions multiplicatives sur les entiers friables , 2003 .

[22]  Brian Murphy,et al.  Modelling the Yield of Number Field Sieve Polynominals , 1998, ANTS.

[23]  G. Tenenbaum Introduction to Analytic and Probabilistic Number Theory , 1995 .

[24]  G. Tenenbaum,et al.  Integers without large prime factors , 1993 .

[25]  P. L. Montgomery,et al.  An FFT extension of the elliptic curve method of factorization , 1992 .

[26]  Andrew Granville,et al.  Limitations to the equi-distribution of primes. IV , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[27]  Eric Saias,et al.  Sur le nombre des entiers sans grand facteur premier , 1989 .

[28]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[29]  Adolf Hildebrand,et al.  On integers free of large prime factors , 1986 .

[30]  H. Iwaniec A new form of the error term in the linear sieve , 1980 .

[31]  David L. Johnson Mean values of Hecke L-functions. , 1979 .

[32]  Jean-Pierre Serre Propriétés galoisiennes des points d'ordre fini des courbes elliptiques , 1971 .

[33]  M. Huxley The Large Sieve Inequality for Algebraic Number Fields Iii. Zero‐Density Results , 1971 .

[34]  de Ng Dick Bruijn The asymptotic behaviour of a function occuring in the theory of primes , 1951 .