Flight Mechanics Modeling and Post-Flight Analysis of ADEPT SR-1

[1]  Michael C. Wilder,et al.  CFD simulations of the supersonic inflatable aerodynamic decelerator (SIAD) ballistic range tests , 2017 .

[2]  Graham V. Candler,et al.  Estimation of dynamic stability coefficients for aerodynamic decelerators using CFD , 2012 .

[3]  David J. Kinney,et al.  Human Mars mission design study utilizing the adaptive deployable entry and placement technology , 2017, 2017 IEEE Aerospace Conference.

[4]  Juan R. Cruz,et al.  Entry, Descent, and Landing Performance of the Mars Phoenix Lander , 2008 .

[5]  Paul Wercinski,et al.  Nano-ADEPT aeroloads wind tunnel test , 2016, 2016 IEEE Aerospace Conference.

[6]  Joseph M. Brock,et al.  Dynamic CFD simulations of the MEADS II ballistic range test model , 2016 .

[7]  David W. Way Preliminary assessment of the Mars Science Laboratory entry, descent, and landing simulation , 2013, 2013 IEEE Aerospace Conference.

[8]  E. Venkatapathy,et al.  Mission sizing and trade studies for low ballistic coefficient entry systems to Venus , 2012, 2012 IEEE Aerospace Conference.

[9]  Prasun N. Desai,et al.  Stardust Entry Reconstruction , 2008 .

[10]  Richard W. Powell,et al.  Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit , 2017 .

[11]  Prasun N. Desai,et al.  Reconstruction of the Genesis Entry , 2008 .

[12]  Ethiraj Venkatapathy,et al.  Nano-ADEPT: An entry system for secondary payloads , 2015, 2015 IEEE Aerospace Conference.

[13]  Walter C. Engelund,et al.  Mars Pathfinder six-degree-of-freedom entry analysis , 1995 .

[14]  E. Venkatapathy,et al.  Venus In Situ Explorer Mission design using a mechanically deployed aerodynamic decelerator , 2013, 2013 IEEE Aerospace Conference.

[15]  P. Kallemeyn,et al.  Mars Pathfinder Entry, Descent, and Landing Reconstruction , 1999 .

[16]  F. M. Cheatwood,et al.  Mars Exploration Rover Six-Degree-Of-Freedom Entry Trajectory Analysis , 2006 .