The computational role of short-term plasticity and the balance of excitation and inhibition in neural microcircuits: experimental and theoretical analysis

.......................................................................................................27 Introduction ..................................................................................................29 Results .........................................................................................................33 Discussion....................................................................................................51 Methodology.................................................................................................57

[1]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[2]  K. Staley,et al.  A new form of feedback at the GABAA receptor , 2001, Nature Neuroscience.

[3]  D. Clifford,et al.  Long-term potentiation during whole-cell recording in rat hippocampal slices , 1993, Neuroscience.

[4]  M. A. Rogers,et al.  Principles of Neural Science, 2nd ed , 1987 .

[5]  H. Wigström,et al.  Facilitation of hippocampal long-lasting potentiation by GABA antagonists. , 1985, Acta physiologica Scandinavica.

[6]  M. Tovée,et al.  Processing speed in the cerebral cortex and the neurophysiology of visual masking , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  Andrea Hasenstaub,et al.  Barrages of Synaptic Activity Control the Gain and Sensitivity of Cortical Neurons , 2003, The Journal of Neuroscience.

[8]  S. Celebrini,et al.  Gaze direction controls response gain in primary visual-cortex neurons , 1999, Nature.

[9]  D. Linden,et al.  Ubiquitous Plasticity and Memory Storage , 2007, Neuron.

[10]  I. Spigelman,et al.  Development of GABA‐mediated, chloride‐dependent inhibition in CA1 pyramidal neurones of immature rat hippocampal slices. , 1991, The Journal of physiology.

[11]  Stephen H Wright,et al.  Generation of resting membrane potential. , 2004, Advances in physiology education.

[12]  A. Stelzer,et al.  Temporal overlap of excitatory and inhibitory afferent input in guinea‐pig CA1 pyramidal cells , 1999, The Journal of physiology.

[13]  R. Ulrich,et al.  On estimating the difference limen in duration discrimination tasks: A comparison of the 2AFC and the reminder task , 2008, Perception & psychophysics.

[14]  N. Spruston,et al.  Intracellular correlate of EPSP‐spike potentiation in CA1 pyramidal neurons is controlled by GABAergic modulation , 2003, Hippocampus.

[15]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[16]  Hans R. Gelderblom,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001 .

[17]  R. Miles Perspectives: neurobiology. Diversity in inhibition. , 2000, Science.

[18]  C. Stevens Consciousness: Crick and the claustrum , 2005, Nature.

[19]  M. Steriade Impact of network activities on neuronal properties in corticothalamic systems. , 2001, Journal of neurophysiology.

[20]  Chris Janson,et al.  Neurobiology, 3rd Edition , 1995, The Yale Journal of Biology and Medicine.

[21]  V. Mountcastle,et al.  Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discrimination. , 1959, Bulletin of the Johns Hopkins Hospital.

[22]  E. Neher,et al.  Vesicle pools and short-term synaptic depression: lessons from a large synapse , 2002, Trends in Neurosciences.

[23]  D. McCormick,et al.  Neurotransmitter control of neocortical neuronal activity and excitability. , 1993, Cerebral cortex.

[24]  D. Contreras,et al.  Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex , 2005, Nature Neuroscience.

[25]  S. Prescott,et al.  Gain control of firing rate by shunting inhibition: Roles of synaptic noise and dendritic saturation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Dimitri M Kullmann,et al.  Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination , 2005, Nature Neuroscience.

[27]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[28]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[29]  Dean V Buonomano,et al.  Development and Plasticity of Spontaneous Activity and Up States in Cortical Organotypic Slices , 2007, The Journal of Neuroscience.

[30]  D. Muller,et al.  A simple method for organotypic cultures of nervous tissue , 1991, Journal of Neuroscience Methods.

[31]  B. Sakmann,et al.  Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell‐specific difference in presynaptic calcium dynamics , 2001, The Journal of physiology.

[32]  Y. Komatsu,et al.  Age-dependent long-term potentiation of inhibitory synaptic transmission in rat visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  Steve M. Potter,et al.  Controlling Bursting in Cortical Cultures with Closed-Loop Multi-Electrode Stimulation , 2005, The Journal of Neuroscience.

[34]  U. Karmarkar,et al.  Timing in the Absence of Clocks: Encoding Time in Neural Network States , 2007, Neuron.

[35]  B. R. Sastry,et al.  Tetanus-induced potentiation of inhibitory postsynaptic potentials in hippocampal CA1 neurons. , 1995, Canadian journal of physiology and pharmacology.

[36]  R. Reid,et al.  Attention Modulates the Responses of Simple Cells in Monkey Primary Visual Cortex , 2005, The Journal of Neuroscience.

[37]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[38]  H. Robinson,et al.  Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons , 1993, Journal of Neuroscience Methods.

[39]  P. J. Sjöström,et al.  Multiple forms of long-term plasticity at unitary neocortical layer 5 synapses , 2007, Neuropharmacology.

[40]  H. Seung,et al.  Learning in Spiking Neural Networks by Reinforcement of Stochastic Synaptic Transmission , 2003, Neuron.

[41]  Edward W. Kairiss,et al.  Field potential evidence for long-term potentiation of feed-forward inhibition in the rat dentate gyrus , 1987, Brain Research.

[42]  S T Kitai,et al.  Version unknown SOURCE ( OR PART OF THE FOLLOWING SOURCE ) : Type article Title Hippocampal inputs to identified neurons in an in vitro slice preparation of the rat nucleus accumbens : evidence for feed-forward inhibition , 2003 .

[43]  M. Corner,et al.  Dynamics and plasticity in developing neuronal networks in vitro. , 2005, Progress in brain research.

[44]  M. Kilgard,et al.  Plasticity of temporal information processing in the primary auditory cortex , 1998, Nature Neuroscience.

[45]  S. Thorpe,et al.  Speed of processing in the human visual system , 1996, Nature.

[46]  Ole Paulsen,et al.  Spike timing–dependent long-term depression requires presynaptic NMDA receptors , 2008, Nature Neuroscience.

[47]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[48]  Andrei Rozov,et al.  Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression , 1999, Nature.

[49]  G G Turrigiano,et al.  Brain-Derived Neurotrophic Factor Mediates the Activity-Dependent Regulation of Inhibition in Neocortical Cultures , 1997, The Journal of Neuroscience.

[50]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[51]  Eve Marder,et al.  The dynamic clamp: artificial conductances in biological neurons , 1993, Trends in Neurosciences.

[52]  M. Tsodyks,et al.  Synaptic Theory of Working Memory , 2008, Science.

[53]  E. Knudsen,et al.  Functional selection of adaptive auditory space map by GABAA-mediated inhibition. , 1999, Science.

[54]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[55]  U. Karmarkar,et al.  Different forms of homeostatic plasticity are engaged with distinct temporal profiles , 2006, The European journal of neuroscience.

[56]  H. Markram,et al.  Differential signaling via the same axon of neocortical pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M Concetta Morrone,et al.  Saccadic eye movements cause compression of time as well as space , 2005, Nature Neuroscience.

[58]  J. Gaiarsa,et al.  Bidirectional plasticity expressed by GABAergic synapses in the neonatal rat hippocampus. , 1996, The Journal of physiology.

[59]  G. Buzsáki,et al.  Hippocampal Pyramidal Cell–Interneuron Spike Transmission Is Frequency Dependent and Responsible for Place Modulation of Interneuron Discharge , 2002, The Journal of Neuroscience.

[60]  Dean V Buonomano,et al.  Differential Effects of Short- and Long-Term Potentiation on Cell Firing in the CA1 Region of the Hippocampus , 2003, The Journal of Neuroscience.

[61]  Alcino J. Silva,et al.  Modulation of Presynaptic Plasticity and Learning by the H-ras/Extracellular Signal-Regulated Kinase/Synapsin I Signaling Pathway , 2005, The Journal of Neuroscience.

[62]  Gilles Laurent,et al.  Transient Dynamics for Neural Processing , 2008, Science.

[63]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[64]  J. Sullivan A simple depletion model of the readily releasable pool of synaptic vesicles cannot account for paired-pulse depression. , 2007, Journal of neurophysiology.

[65]  Xiaoqin Wang,et al.  Sustained firing in auditory cortex evoked by preferred stimuli , 2005, Nature.

[66]  Li I. Zhang,et al.  Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. , 2004, Journal of neurophysiology.

[67]  Daniel R. Masys,et al.  UNIVERSITY OF CALIFORNIA, SAN DIEGO , 2001 .

[68]  Zhong-Wei Zhang,et al.  Maturation of layer V pyramidal neurons in the rat prefrontal cortex: intrinsic properties and synaptic function. , 2004, Journal of neurophysiology.

[69]  M. J. Friedlander,et al.  The Kinetic Profile of Intracellular Calcium Predicts Long-Term Potentiation and Long-Term Depression , 2004, The Journal of Neuroscience.

[70]  Emilio Salinas,et al.  Gain Modulation A Major Computational Principle of the Central Nervous System , 2000, Neuron.

[71]  R. Miles,et al.  Variation in strength of inhibitory synapses in the CA3 region of guinea‐pig hippocampus in vitro. , 1990, The Journal of physiology.

[72]  Maiken Nedergaard,et al.  Activity-Dependent Long-Term Potentiation of Intrinsic Excitability in Hippocampal CA1 Pyramidal Neurons , 2005, The Journal of Neuroscience.

[73]  Dean V. Buonomano,et al.  Timing and Balance of Inhibition Enhance the Effect of Long-Term Potentiation on Cell Firing , 2004, The Journal of Neuroscience.

[74]  B. Katz,et al.  The role of calcium in neuromuscular facilitation , 1968, The Journal of physiology.

[75]  L. Maffei,et al.  The visual cortex as a spatial frequency analyser. , 1973, Vision research.

[76]  Henry Markram,et al.  Synapses as dynamic memory buffers , 2002, Neural Networks.

[77]  B. Sakmann,et al.  Developmental Switch in the Short-Term Modification of Unitary EPSPs Evoked in Layer 2/3 and Layer 5 Pyramidal Neurons of Rat Neocortex , 1999, The Journal of Neuroscience.

[78]  Dominique Debanne,et al.  Long-Term Enhancement of Neuronal Excitability and Temporal Fidelity Mediated by Metabotropic Glutamate Receptor Subtype 5 , 2003, The Journal of Neuroscience.

[79]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[80]  Kenneth D Miller,et al.  Multiplicative Gain Changes Are Induced by Excitation or Inhibition Alone , 2003, The Journal of Neuroscience.

[81]  Glenn C. Turner,et al.  Oscillations and Sparsening of Odor Representations in the Mushroom Body , 2002, Science.

[82]  K. L. Perkins,et al.  Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices , 2006, Journal of Neuroscience Methods.

[83]  R. Nicoll,et al.  Comparison of two forms of long-term potentiation in single hippocampal neurons. , 1990, Science.

[84]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[85]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[86]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[87]  W. Catterall,et al.  Regulation of Presynaptic CaV2.1 Channels by Ca2+ Sensor Proteins Mediates Short-Term Synaptic Plasticity , 2008, Neuron.

[88]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[89]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[90]  N. Spruston,et al.  Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. , 1992, Journal of neurophysiology.

[91]  L. Abbott,et al.  A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex , 1997, The Journal of Neuroscience.

[92]  Eric R Kandel,et al.  Calcineurin-Mediated LTD of GABAergic Inhibition Underlies the Increased Excitability of CA1 Neurons Associated with LTP , 2000, Neuron.

[93]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[94]  B. R. Sastry,et al.  Mechanisms involved in tetanus-induced potentiation of fast IPSCs in rat hippocampal CA1 neurons. , 2000, Journal of neurophysiology.