Adaptive Selective Replication for Complex Event Processing Systems

As of today, active replication is used in complex event processing systems to enable near zero latency take over in case of host failures. Moreover, elastic complex event processing systems adapt their resource consumption to the actual system load. However, active replication is a coarse-grained approach demanding the duplication of all used resources. Therefore, we envision a system adopting adaptive fine-grained replication strategies allowing to trade off availability and used resources.

[1]  Edward G. Coffman,et al.  Approximation algorithms for bin packing: a survey , 1996 .

[2]  Vana Kalogeraki,et al.  Replica placement for high availability in distributed stream processing systems , 2008, DEBS.

[3]  Jaime G. Carbonell,et al.  Predicate Indexing for Incremental Multi-Query Optimization , 2008, ISMIS.

[4]  Leonardo Neumeyer,et al.  S4: Distributed Stream Computing Platform , 2010, 2010 IEEE International Conference on Data Mining Workshops.

[5]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[6]  Ying Xing,et al.  Providing resiliency to load variations in distributed stream processing , 2006, VLDB.

[7]  Fuyuan Xiao,et al.  Economical and Fault-Tolerant Load Balancing in Distributed Stream Processing Systems , 2012, IEICE Trans. Inf. Syst..

[8]  Raul Castro Fernandez,et al.  Integrating scale out and fault tolerance in stream processing using operator state management , 2013, SIGMOD '13.

[9]  S. Janson,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[10]  Philip S. Yu,et al.  SPADE: the system s declarative stream processing engine , 2008, SIGMOD Conference.

[11]  Milind Dawande,et al.  Variable Sized Bin Packing With Color Constraints , 2001, Electron. Notes Discret. Math..

[12]  Albert G. Greenberg,et al.  Fault-tolerant stream processing using a distributed, replicated file system , 2008, Proc. VLDB Endow..

[13]  Kun-Lung Wu,et al.  SODA: An Optimizing Scheduler for Large-Scale Stream-Based Distributed Computer Systems , 2008, Middleware.

[14]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[15]  Ying Xing,et al.  The Design of the Borealis Stream Processing Engine , 2005, CIDR.

[16]  Daniel Kuhn,et al.  SQPR: Stream query planning with reuse , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[17]  Jeffrey F. Naughton,et al.  Rate-based query optimization for streaming information sources , 2002, SIGMOD '02.

[18]  Stefano Zamagni,et al.  What is a Cooperative , 2010 .

[19]  Ying Li,et al.  Placement Strategies for Internet-Scale Data Stream Systems , 2008, IEEE Internet Computing.

[20]  E. Chong,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[21]  Deepak S. Turaga,et al.  Towards Optimal Resource Allocation in Partial-Fault Tolerant Applications , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[22]  Fan Ye,et al.  A Hybrid Approach to High Availability in Stream Processing Systems , 2010, 2010 IEEE 30th International Conference on Distributed Computing Systems.

[23]  Ying Xing,et al.  A Cooperative, Self-Configuring High-Availability Solution for Stream Processing , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[24]  Christof Fetzer,et al.  AN-Encoding Compiler: Building Safety-Critical Systems with Commodity Hardware , 2009, SAFECOMP.

[25]  Michael Stonebraker,et al.  Fault-tolerance in the borealis distributed stream processing system , 2008, ACM Trans. Database Syst..

[26]  Kashi Venkatesh Vishwanath,et al.  Characterizing cloud computing hardware reliability , 2010, SoCC '10.