Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors

[1]  D. Smirnov,et al.  Gate Tunable Dark Trions in Monolayer WSe_{2}. , 2019, Physical review letters.

[2]  T. Taniguchi,et al.  Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor , 2018, Nature Communications.

[3]  Ziliang Ye,et al.  Efficient generation of neutral and charged biexcitons in encapsulated WSe2 monolayers , 2018, Nature Communications.

[4]  D. Hilton,et al.  Biexcitons in monolayer transition metal dichalcogenides tuned by magnetic fields , 2018, Nature Communications.

[5]  G. Eda,et al.  Electroluminescent Devices Based on 2D Semiconducting Transition Metal Dichalcogenides , 2018, Advanced materials.

[6]  D. Smirnov,et al.  Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2 , 2018, Nature Communications.

[7]  M. Atatüre,et al.  Charge-tuneable biexciton complexes in monolayer WSe2 , 2018, Nature Communications.

[8]  A. Molina‐Mendoza,et al.  Atomically thin p-n junctions based on two-dimensional materials. , 2018, Chemical Society reviews.

[9]  Ming C. Wu,et al.  Large-area and bright pulsed electroluminescence in monolayer semiconductors , 2018, Nature Communications.

[10]  Kenji Watanabe,et al.  Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor , 2018, Nature Communications.

[11]  Kenji Watanabe,et al.  Zeeman Splitting and Inverted Polarization of Biexciton Emission in Monolayer WS_{2}. , 2018, Physical review letters.

[12]  Ting Yu,et al.  Optical Properties of 2D Semiconductor WS2 , 2018 .

[13]  C. Robert,et al.  Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers , 2017, 1708.05398.

[14]  Lain‐Jong Li,et al.  A Versatile and Simple Approach to Generate Light Emission in Semiconductors Mediated by Electric Double Layers , 2017, Advanced materials.

[15]  C. Robert,et al.  In-Plane Propagation of Light in Transition Metal Dichalcogenide Monolayers: Optical Selection Rules. , 2017, Physical review letters.

[16]  C. Robert,et al.  Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures , 2017, 1702.00323.

[17]  M. Lukin,et al.  Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. , 2017, Nature nanotechnology.

[18]  Ying Wang,et al.  Magnetic brightening and control of dark excitons in monolayer WSe2. , 2016, Nature nanotechnology.

[19]  Carmen Palacios-Berraquero,et al.  Large-scale quantum-emitter arrays in atomically thin semiconductors , 2016, Nature Communications.

[20]  Judith F. Specht,et al.  Neutral and charged inter-valley biexcitons in monolayer MoSe2 , 2016, Nature Communications.

[21]  D. Basko,et al.  Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides , 2016, 1612.02867.

[22]  J. Fabian,et al.  Excitonic Valley Effects in Monolayer WS2 under High Magnetic Fields. , 2016, Nano letters.

[23]  Xiaodong Xu,et al.  Single Defect Light-Emitting Diode in a van der Waals Heterostructure. , 2016, Nano letters.

[24]  Bjarke S. Jessen,et al.  The hot pick-up technique for batch assembly of van der Waals heterostructures , 2016, Nature communications.

[25]  M. N. Makhonin,et al.  Electrically pumped single-defect light emitters in WSe2 , 2016, 1605.01921.

[26]  M. Atatüre,et al.  Atomically thin quantum light-emitting diodes , 2016, Nature Communications.

[27]  Aaron M. Jones,et al.  Excitonic luminescence upconversion in a two-dimensional semiconductor , 2015, Nature Physics.

[28]  T. Heinz,et al.  Experimental Evidence for Dark Excitons in Monolayer WSe_{2}. , 2015, Physical review letters.

[29]  A Gholinia,et al.  WSe₂ Light-Emitting Tunneling Transistors with Enhanced Brightness at Room Temperature. , 2015, Nano letters.

[30]  C. Strunk,et al.  Identification of excitons, trions and biexcitons in single‐layer WS2 , 2015, 1507.01342.

[31]  Ryan Beams,et al.  Voltage-controlled quantum light from an atomically thin semiconductor. , 2015, Nature nanotechnology.

[32]  Robert Schneider,et al.  Single-photon emission from localized excitons in an atomically thin semiconductor , 2015 .

[33]  Yuan Wang,et al.  Monolayer excitonic laser , 2015, Nature Photonics.

[34]  M. Eginligil,et al.  Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. , 2015, ACS nano.

[35]  P. Mallet,et al.  Single photon emitters in exfoliated WSe2 structures. , 2015, Nature nanotechnology.

[36]  Jian-Wei Pan,et al.  Single quantum emitters in monolayer semiconductors. , 2014, Nature nanotechnology.

[37]  A. Kis,et al.  Optically active quantum dots in monolayer WSe2. , 2014, Nature nanotechnology.

[38]  Jonghwan Kim,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[39]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[40]  Timothy C. Berkelbach,et al.  Excitons in atomically thin transition-metal dichalcogenides , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[41]  Y. J. Zhang,et al.  Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.

[42]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[43]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[44]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[45]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature nanotechnology.

[46]  Timothy C. Berkelbach,et al.  Theory of neutral and charged excitons in monolayer transition metal dichalcogenides , 2013, 1305.4972.

[47]  Janna Börner,et al.  Real-time imaging of methane gas leaks using a single-pixel camera. , 2017, Optics express.

[48]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[49]  J. Singh,et al.  Binding of quasi two-dimensional biexcitons , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[50]  Phillips,et al.  Biexciton creation and recombination in a GaAs quantum well. , 1992, Physical review. B, Condensed matter.