On the non-standard rhombic spin Hamiltonian parameters derived from Mössbauer spectroscopy and magnetism-related measurements
暂无分享,去创建一个
[1] C. Rudowicz. Crystal Field Handbook: Computer package CST , 2000 .
[2] M. F. Reid,et al. On the standardization of crystal-field parameters and the multiple correlated fitting technique: Applications to rare-earth compounds , 2000 .
[3] C. Rudowicz. LETTER TO THE EDITOR: On the relations between the zero-field splitting parameters in the extended Stevens operator notation and the conventional ones used in EMR for orthorhombic and lower symmetry , 2000 .
[4] P. Guionneau,et al. Spin transition in [Fe(PM-BiA)2(NCS)2] studied by the electron paramagnetic resonance of the Mn2+ ion , 2000 .
[5] C. Rudowicz,et al. Monoclinic and orthorhombic standardization of spin-Hamiltonian parameters for rare-earth centers in various crystals , 2000 .
[6] J. Freed,et al. An EPR Study of Some Highly Distorted Tetrahedral Manganese(II) Complexes at High Magnetic Fields , 1999 .
[7] C. Rudowicz,et al. Orthorhombic standardization of spin-Hamiltonian parameters for transition-metal centres in various crystals , 1999 .
[8] J. Akimitsu,et al. ESR study of the Haldane gap system Y2BaNiO5 in high magnetic fields , 1998 .
[9] J. Akimitsu,et al. ESR study of Haldane system Y2BaNiO5 in submillimeter wave region , 1998 .
[10] G. Shirane,et al. Neutron-scattering studies of a phase transition in the metamagnet FeBr{sub 2} under external magnetic fields , 1997 .
[11] T. Otomo,et al. Spin Dynamics in an S= 2 Heisenberg Antiferromagnetic Chain, CsCrCl 3 , 1997 .
[12] A. Sonntag,et al. QUANTUM PARAMAGNETIC FLUCTATIONS IN RBFECL3 IN A MAGNETIC FIELD APPLIED PERPENDICULAR TO THE ANISOTRPY AXIS , 1997 .
[13] J. Akimitsu,et al. Neutron Scattering Study of Magnetic Excitations in the Spin S = 1 One-Dimensional Heisenberg Antiferromagnet Y2BaNiO5 , 1996 .
[14] Yamazaki,et al. Observation of S=1 fractional spins in the S=2 finite linear-chain Heisenberg antiferromagnet CsCr1-xMgxCl3. , 1996, Physical Review B (Condensed Matter).
[15] Alonso,et al. Continuous-wave and pulsed EPR studies of Cr2+ defects in CaF2. , 1996, Physical review. B, Condensed matter.
[16] P. Oliete,et al. EPR of jahn-teller Cf2+ in CaF2, BaF2 and SrC12 , 1995 .
[17] F. Hartmann-Boutron. A simple Derivation of the Tunneling Splitting for Large Quantum Spins , 1995 .
[18] Li Cui-lian,et al. Fine structure of optical absorption spectra in CrF2 , 1995 .
[19] W. Su,et al. 57Fe Mössbauer spectroscopy study of Eu1−xCaxFeO3−y , 1995 .
[20] F. Parak,et al. Mössbauer studies of spin-lattice relaxation in deoxy-myoglobin , 1994 .
[21] F. Parak,et al. Spin-lattice relaxation in Mössbauer spectra of Fe(III) high-spin complexes in an orthorhombic crystal field , 1994 .
[22] C. Rudowicz. Correlations between orthorhombic crystal field parameters for rare-earth (f n ) and transition-metal (d n ) ions in crystals: REBa2Cu3O7-x , RE2F14B, RE-garnets, RE:LaF3 and MnF2 , 1991 .
[23] E. Bill,et al. Iron-containing proteins and related analogs — complementary Mössbauer, EPR and magnetic susceptibility studies , 1991 .
[24] H. Rechenberg,et al. Temperature dependence of EPR spectra of Fe3+ in (NH4)2InCl5 · H2O , 1989 .
[25] Figueiredo,et al. Magnetic phase diagram of NiCl2 , 1988, Physical review. B, Condensed matter.
[26] C. Bellitto,et al. Optical spectroscopy of one- and two-dimensional ionic magnets of chromium(2+): CsCrCl3, (CH3)4NCrCl3, (CH3)4NCrBr3, CrCl2, (C2H5NH3)2CrCl4, and (C2H5NH3)2CrBr4 , 1987 .
[27] K. Katsumata,et al. Fe2+ localized excitation and spin orrientation in Fe1-xCoxCl2 , 1987 .
[28] R. Schilling,et al. Magnetic field dependence of the tunnelling splitting of quantum spins , 1986 .
[29] C. Rudowicz. On standardization and algebraic symmetry of the ligand field Hamiltonian for rare earth ions at monoclinic symmetry sites , 1986 .
[30] C. Rudowicz,et al. On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry , 1985 .
[31] H. Wickman,et al. Magnetic behavior of halobis(diethyldiselenocarbamato)iron(III): Interactions, anisotropy, and three-dimensional XY ferromagnetism , 1984 .
[32] D. J. Lockwood,et al. Excitations in Fe1-xCoxCl2: a randomly mixed antiferromagnet with competing spin anisotropies , 1982 .
[33] G. Lang,et al. High magnetic field Mössbauer studies of deoxymyoglobin, deoxyhemoglobin, and synthetic analogues: Theoretical interpretations , 1979 .
[34] M. Hutchings,et al. The magnetic properties of CsCrCl3, an antiferromagnetic chain compound with single-ion anisotropy , 1979 .
[35] T. Yonetani,et al. High magnetic field Mössbauer studies of deoxymyoglobin, deoxyhemoglobin, and synthetic analogues. , 1979, Biochimica et Biophysica Acta.
[36] H. Suga,et al. Heat capacity of a five-coordinated ferromagnet, chloro bis(N,N-diethyldithiocarbamato)iron(III), in the temperature range from 0.4 to 20 K , 1977 .
[37] N. Alcock,et al. Physical properties of linear-chain systems. 6. Single-crystal absorption spectra of rubidium chromium trichloride and cesium chromium trichloride , 1976 .
[38] N. Uryǔ,et al. Effects of interchain interactions and anisotropy terms on the specific heat of the linear chain antiferromagnet CsMnCl3⋅2H2O , 1976 .
[39] N. Uryǔ,et al. Spin Wave Analysis of the Linear Chain Antiferromagnet CsMnCl3·2H2O , 1975 .
[40] C. Bates,et al. The Jahn-Teller theory and calculations of the relaxation time and resonance lineshape for Fe2+ ions in Al2O3 , 1975 .
[41] R. Sherwood,et al. Magnetism in orbitally unquenched chainar compounds. I. The antiferromagnetic case: RbFeBr3 , 1975 .
[42] V. R. Marathe,et al. Paramagnetic anisotropy and electronic structure of S = 3/2 halobis(diethyldithiocarbamato)iron(III). I. Spin-Hamiltonian formalism and ground-state zero-field splittings of ferric ion , 1975 .
[43] R. Martin,et al. Paramagnetic anisotropy and zero-field splitting in chloro bis (diethyldithiocarbamato) iron (III) , 1974 .
[44] R. Carlin,et al. Antiferromagnetic Ordering and Crystal Field Behavior of NiCl 2 4H 2 O , 1973 .
[45] B. Kanellakopulos,et al. Spin S = 1 in six‐coordinated iron(II): Low‐temperature magnetism, Mössbauer effect, and electronic structure , 1973 .
[46] R. J. Williams,et al. Paramagnetic Mössbauer Spectra of Some Rhombic Fe3+ Materials: Correlation with ESR , 1971 .
[47] R. Sherwood,et al. Paramagnetic Anisotropy, Low Temperature Magnetization, and Electronic Structure of Iron(II) Phthalocyanine , 1970 .
[48] A. Abragam,et al. Electron paramagnetic resonance of transition ions , 1970 .
[49] H. Wickman,et al. Orbitally Nondegenerate Iron(III) Dithiocarbamates. I. Mössbauer Relaxation Phenomena , 1969 .
[50] K. Stevens,et al. The ground state of the ferrous ion in alumina and calculation of spin-lattice relaxation , 1968 .
[51] R. J. Williams,et al. S = 1 Spin State of Divalent Iron. I. Magnetic Properties of Phthalocyanine Iron (II) , 1968 .
[52] J. H. Van Vleck,et al. Effective Field Theories of Magnetism , 1966 .
[53] D. A. Shirley,et al. Paramagnetic Resonance of Fe3+ in Polycrystalline Ferrichrome A , 1965 .
[54] O. Jardetzky. Magnetic Resonance in Biological Systems. , 1964, Science.