On the non-standard rhombic spin Hamiltonian parameters derived from Mössbauer spectroscopy and magnetism-related measurements

[1]  C. Rudowicz Crystal Field Handbook: Computer package CST , 2000 .

[2]  M. F. Reid,et al.  On the standardization of crystal-field parameters and the multiple correlated fitting technique: Applications to rare-earth compounds , 2000 .

[3]  C. Rudowicz LETTER TO THE EDITOR: On the relations between the zero-field splitting parameters in the extended Stevens operator notation and the conventional ones used in EMR for orthorhombic and lower symmetry , 2000 .

[4]  P. Guionneau,et al.  Spin transition in [Fe(PM-BiA)2(NCS)2] studied by the electron paramagnetic resonance of the Mn2+ ion , 2000 .

[5]  C. Rudowicz,et al.  Monoclinic and orthorhombic standardization of spin-Hamiltonian parameters for rare-earth centers in various crystals , 2000 .

[6]  J. Freed,et al.  An EPR Study of Some Highly Distorted Tetrahedral Manganese(II) Complexes at High Magnetic Fields , 1999 .

[7]  C. Rudowicz,et al.  Orthorhombic standardization of spin-Hamiltonian parameters for transition-metal centres in various crystals , 1999 .

[8]  J. Akimitsu,et al.  ESR study of the Haldane gap system Y2BaNiO5 in high magnetic fields , 1998 .

[9]  J. Akimitsu,et al.  ESR study of Haldane system Y2BaNiO5 in submillimeter wave region , 1998 .

[10]  G. Shirane,et al.  Neutron-scattering studies of a phase transition in the metamagnet FeBr{sub 2} under external magnetic fields , 1997 .

[11]  T. Otomo,et al.  Spin Dynamics in an S= 2 Heisenberg Antiferromagnetic Chain, CsCrCl 3 , 1997 .

[12]  A. Sonntag,et al.  QUANTUM PARAMAGNETIC FLUCTATIONS IN RBFECL3 IN A MAGNETIC FIELD APPLIED PERPENDICULAR TO THE ANISOTRPY AXIS , 1997 .

[13]  J. Akimitsu,et al.  Neutron Scattering Study of Magnetic Excitations in the Spin S = 1 One-Dimensional Heisenberg Antiferromagnet Y2BaNiO5 , 1996 .

[14]  Yamazaki,et al.  Observation of S=1 fractional spins in the S=2 finite linear-chain Heisenberg antiferromagnet CsCr1-xMgxCl3. , 1996, Physical Review B (Condensed Matter).

[15]  Alonso,et al.  Continuous-wave and pulsed EPR studies of Cr2+ defects in CaF2. , 1996, Physical review. B, Condensed matter.

[16]  P. Oliete,et al.  EPR of jahn-teller Cf2+ in CaF2, BaF2 and SrC12 , 1995 .

[17]  F. Hartmann-Boutron A simple Derivation of the Tunneling Splitting for Large Quantum Spins , 1995 .

[18]  Li Cui-lian,et al.  Fine structure of optical absorption spectra in CrF2 , 1995 .

[19]  W. Su,et al.  57Fe Mössbauer spectroscopy study of Eu1−xCaxFeO3−y , 1995 .

[20]  F. Parak,et al.  Mössbauer studies of spin-lattice relaxation in deoxy-myoglobin , 1994 .

[21]  F. Parak,et al.  Spin-lattice relaxation in Mössbauer spectra of Fe(III) high-spin complexes in an orthorhombic crystal field , 1994 .

[22]  C. Rudowicz Correlations between orthorhombic crystal field parameters for rare-earth (f n ) and transition-metal (d n ) ions in crystals: REBa2Cu3O7-x , RE2F14B, RE-garnets, RE:LaF3 and MnF2 , 1991 .

[23]  E. Bill,et al.  Iron-containing proteins and related analogs — complementary Mössbauer, EPR and magnetic susceptibility studies , 1991 .

[24]  H. Rechenberg,et al.  Temperature dependence of EPR spectra of Fe3+ in (NH4)2InCl5 · H2O , 1989 .

[25]  Figueiredo,et al.  Magnetic phase diagram of NiCl2 , 1988, Physical review. B, Condensed matter.

[26]  C. Bellitto,et al.  Optical spectroscopy of one- and two-dimensional ionic magnets of chromium(2+): CsCrCl3, (CH3)4NCrCl3, (CH3)4NCrBr3, CrCl2, (C2H5NH3)2CrCl4, and (C2H5NH3)2CrBr4 , 1987 .

[27]  K. Katsumata,et al.  Fe2+ localized excitation and spin orrientation in Fe1-xCoxCl2 , 1987 .

[28]  R. Schilling,et al.  Magnetic field dependence of the tunnelling splitting of quantum spins , 1986 .

[29]  C. Rudowicz On standardization and algebraic symmetry of the ligand field Hamiltonian for rare earth ions at monoclinic symmetry sites , 1986 .

[30]  C. Rudowicz,et al.  On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry , 1985 .

[31]  H. Wickman,et al.  Magnetic behavior of halobis(diethyldiselenocarbamato)iron(III): Interactions, anisotropy, and three-dimensional XY ferromagnetism , 1984 .

[32]  D. J. Lockwood,et al.  Excitations in Fe1-xCoxCl2: a randomly mixed antiferromagnet with competing spin anisotropies , 1982 .

[33]  G. Lang,et al.  High magnetic field Mössbauer studies of deoxymyoglobin, deoxyhemoglobin, and synthetic analogues: Theoretical interpretations , 1979 .

[34]  M. Hutchings,et al.  The magnetic properties of CsCrCl3, an antiferromagnetic chain compound with single-ion anisotropy , 1979 .

[35]  T. Yonetani,et al.  High magnetic field Mössbauer studies of deoxymyoglobin, deoxyhemoglobin, and synthetic analogues. , 1979, Biochimica et Biophysica Acta.

[36]  H. Suga,et al.  Heat capacity of a five-coordinated ferromagnet, chloro bis(N,N-diethyldithiocarbamato)iron(III), in the temperature range from 0.4 to 20 K , 1977 .

[37]  N. Alcock,et al.  Physical properties of linear-chain systems. 6. Single-crystal absorption spectra of rubidium chromium trichloride and cesium chromium trichloride , 1976 .

[38]  N. Uryǔ,et al.  Effects of interchain interactions and anisotropy terms on the specific heat of the linear chain antiferromagnet CsMnCl3⋅2H2O , 1976 .

[39]  N. Uryǔ,et al.  Spin Wave Analysis of the Linear Chain Antiferromagnet CsMnCl3·2H2O , 1975 .

[40]  C. Bates,et al.  The Jahn-Teller theory and calculations of the relaxation time and resonance lineshape for Fe2+ ions in Al2O3 , 1975 .

[41]  R. Sherwood,et al.  Magnetism in orbitally unquenched chainar compounds. I. The antiferromagnetic case: RbFeBr3 , 1975 .

[42]  V. R. Marathe,et al.  Paramagnetic anisotropy and electronic structure of S = 3/2 halobis(diethyldithiocarbamato)iron(III). I. Spin-Hamiltonian formalism and ground-state zero-field splittings of ferric ion , 1975 .

[43]  R. Martin,et al.  Paramagnetic anisotropy and zero-field splitting in chloro bis (diethyldithiocarbamato) iron (III) , 1974 .

[44]  R. Carlin,et al.  Antiferromagnetic Ordering and Crystal Field Behavior of NiCl 2 4H 2 O , 1973 .

[45]  B. Kanellakopulos,et al.  Spin S = 1 in six‐coordinated iron(II): Low‐temperature magnetism, Mössbauer effect, and electronic structure , 1973 .

[46]  R. J. Williams,et al.  Paramagnetic Mössbauer Spectra of Some Rhombic Fe3+ Materials: Correlation with ESR , 1971 .

[47]  R. Sherwood,et al.  Paramagnetic Anisotropy, Low Temperature Magnetization, and Electronic Structure of Iron(II) Phthalocyanine , 1970 .

[48]  A. Abragam,et al.  Electron paramagnetic resonance of transition ions , 1970 .

[49]  H. Wickman,et al.  Orbitally Nondegenerate Iron(III) Dithiocarbamates. I. Mössbauer Relaxation Phenomena , 1969 .

[50]  K. Stevens,et al.  The ground state of the ferrous ion in alumina and calculation of spin-lattice relaxation , 1968 .

[51]  R. J. Williams,et al.  S = 1 Spin State of Divalent Iron. I. Magnetic Properties of Phthalocyanine Iron (II) , 1968 .

[52]  J. H. Van Vleck,et al.  Effective Field Theories of Magnetism , 1966 .

[53]  D. A. Shirley,et al.  Paramagnetic Resonance of Fe3+ in Polycrystalline Ferrichrome A , 1965 .

[54]  O. Jardetzky Magnetic Resonance in Biological Systems. , 1964, Science.