Preparation of metallic copper nanoparticles in aqueous solution and their bonding properties

Abstract This paper describes a method for preparing metallic Cu nanoparticles in aqueous solution, and a bonding technique using the nanoparticles. Preparation of the Cu particle colloid solution was performed in water at room temperature in air using a copper source (0.01 M CuCl 2 ), a reducing reagent (0.1–1.0 M hydrazine), and stabilizers (0–1.5 × 10 −3  M citric acid and 5.0 × 10 −3  M cetyltrimethylammonium bromide). The metallic Cu nanoparticles with a size of 71 ± 14 nm were prepared at 0.4 M hydrazine and 5 × 10 −4  M citric acid. A stage and a plate of metallic Cu were successfully bonded under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in H 2 gas with help of the metallic Cu particles. A shear strength required for separating the bonded Cu substrates was as high as 28.6 MPa.

[1]  Yoshiaki Morisada,et al.  A Low-Temperature Bonding Process Using Mixed Cu–Ag Nanoparticles , 2010 .

[2]  Yoshio Kobayashi,et al.  Silica-coating of metallic copper nanoparticles in aqueous solution , 2008 .

[3]  J. Groza,et al.  Nanoparticulate materials densification , 1996 .

[4]  Akshay K. Singh,et al.  Structural and surface plasmon behavior of Cu nanoparticles using different stabilizers , 2010 .

[5]  Szu-Han Wu,et al.  Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. , 2004, Journal of colloid and interface science.

[6]  Yusuke Yasuda,et al.  Optimal design of coating material for nanoparticles and its application for low-temperature interconnection , 2010 .

[7]  A. Hirose,et al.  Development of Lead Free Bonding Technique Corresponding to High Temperature Environment Using Micro-scaled Silver-oxide Particles , 2010 .

[8]  M. Salavati‐Niasari,et al.  Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor , 2009 .

[9]  M. Salunkhe,et al.  Copper nanoparticles in ionic liquids: Recyclable and efficient catalytic system for 1,3-dipolar cycloaddition reaction , 2009 .

[10]  Marie-Paule Pileni,et al.  Control of the Shape and the Size of Copper Metallic Particles , 1996 .

[11]  Guo-Quan Lu,et al.  Low-Temperature Sintered Nanoscale Silver as a Novel Semiconductor Device-Metallized Substrate Interconnect Material , 2006, IEEE Transactions on Components and Packaging Technologies.

[12]  A. Yabuki,et al.  Electrical conductivity of copper nanoparticle thin films annealed at low temperature , 2010 .

[13]  Gurdev Singh,et al.  Experimental correlations of pH and ionic strength effects on the colloidal fouling potential of silica nanoparticles in crossflow ultrafiltration , 2007 .

[14]  Kojiro F. Kobayashi,et al.  Study of Bonding Technology Using Silver Nanoparticles , 2008 .

[15]  Seonhee Jang,et al.  Sintering of inkjet printed copper nanoparticles for flexible electronics , 2010 .

[16]  Guo-Quan Lu,et al.  Thermomechanical Reliability of Low-Temperature Sintered Silver Die Attached SiC Power Device Assembly , 2006, IEEE Transactions on Device and Materials Reliability.

[17]  Mieko Takagi,et al.  Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films , 1954 .

[18]  S. Özkar,et al.  Zeolite confined copper(0) nanoclusters as cost-effective and reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane , 2010 .

[19]  V. Iyer,et al.  Radiation induced synthesis and characterization of copper nanoparticles , 1998 .

[20]  W. H. Kearns,et al.  Fundamentals of welding , 1976 .

[21]  Kojiro F. Kobayashi,et al.  Metal-metal bonding process using Ag metallo-organic nanoparticles , 2005 .

[22]  H. Yilmaz,et al.  AFM interaction study of alpha-alumina particle and c-sapphire surfaces at high-ionic-strength electrolyte solutions. , 2007, Journal of colloid and interface science.

[23]  Yoshio Kobayashi,et al.  Synthesis of metallic copper nanoparticles coated with polypyrrole , 2009 .

[24]  N. Can,et al.  Effect of thermal treatment on linear optical properties of Cu nanoclusters , 2009 .

[25]  R. W. Wang,et al.  Nonlinear optical properties of Cu nanoclusters by ion implantation in silicate glass , 2010 .

[26]  E. Ide,et al.  Low-Temperature Bonding Using Silver Nanoparticles Stabilized by Short-Chain Alkylamines , 2009 .

[27]  P. Das,et al.  First hyperpolarizabilities of unprotected and polymer protected copper nanoparticles prepared by laser ablation , 2006 .

[28]  Y. C. Chan,et al.  Interfacial microstructure and shear strength of Ag nano particle doped Sn-9Zn solder in ball grid array packages , 2009, Microelectron. Reliab..

[29]  X. Lan,et al.  Preparation of copper nanoparticles by chemical reduction method using potassium borohydride , 2010 .

[30]  Y. Diamant,et al.  Sonochemical synthesis of amorphous Cu andnanocrystalline Cu2O embedded in a polyaniline matrix , 2001 .

[31]  Yoshio Kobayashi,et al.  Synthesis of submicrometer-sized titania spherical particles with a sol-gel method and their application to colloidal photonic crystals. , 2005, Journal of colloid and interface science.

[32]  Shin-ichi Matsuoka,et al.  Direct welding of different metals used ultrasonic vibration , 2009 .

[33]  Akio Hirose,et al.  Bonding Technique Using Micro-Scaled Silver-Oxide Particles for In-Situ Formation of Silver Nanoparticles , 2008 .

[34]  R. Xu,et al.  Electrical double layers' interaction between oppositely charged particles as related to surface charge density and ionic strength , 2008 .

[35]  Takuto Yamaguchi,et al.  Interfacial Bonding Mechanism Using Silver Metallo-Organic Nanoparticles to Bulk Metals and Observation of Sintering Behavior , 2008 .

[36]  A. Hirose,et al.  Direct Bonding to Aluminum with Silver-Oxide Microparticles , 2009 .