Predicting the flow stress behavior of Ni-42.5Ti-3Cu during hot deformation using constitutive equations

[1]  K. Dehghani,et al.  Microstructural Evolution During the Hot Deformation of Ti-55Ni (at. pct) Intermetallic Alloy , 2010 .

[2]  K. V. Kasiviswanathan,et al.  Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel , 2009 .

[3]  J. Jonas,et al.  Effect of particle/matrix interfacial character on the high-temperature deformation and recrystallization behavior of Cu with dispersed Fe particles , 2008 .

[4]  J. Zhong,et al.  Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel , 2008 .

[5]  Klaus Neuking,et al.  Processing and property assessment of NiTi and NiTiCu shape memory actuator springs , 2008 .

[6]  Jue Zhong,et al.  Constitutive modeling for elevated temperature flow behavior of 42CrMo steel , 2008 .

[7]  Kenneth S. Vecchio,et al.  Superelasticity in a New BioImplant Material: Ni-rich 55NiTi Alloy , 2007 .

[8]  L. Rong,et al.  Temperature memory effect of Ti50Ni30Cu20 (at.%) alloy , 2005 .

[9]  H. Abe,et al.  Effect of aluminum addition on the transformation of NiTi alloy , 2005 .

[10]  G. Eggeler,et al.  On the influence of heterogeneous precipitation on martensitic transformations in a Ni-rich NiTi shape memory alloy , 2004 .

[11]  Yong Liu Mechanical and thermomechanical properties of a Ti50Ni25Cu25 melt spun ribbon , 2003 .

[12]  M. Sasaki,et al.  High damping capacity due to two-step phase transformation in Ni–Ti, Ni–Ti–Cu, and Fe–Cr–Mn alloys , 2003 .

[13]  J. Dutkiewicz,et al.  Microstructure and martensite transformation in aged Ti-25Ni-25Cu shape memory melt spun ribbons , 2002 .

[14]  T. R. Meadowcroft,et al.  Flow stress modeling and warm rolling simulation behavior of two Ti–Nb interstitial-free steels in the ferrite region , 2001 .

[15]  H. Miura,et al.  Dynamic recrystallization of copper polycrystals with different purities , 1999 .