Super-Resolution of 3-D GPR Signals to Estimate Thin Asphalt Overlay Thickness Using the XCMP Method

The extended common midpoint (XCMP) method can be used on multichannel 3-D ground-penetrating radar (GPR) to estimate the asphalt pavement thickness and dielectric constant without the need for calibration by taking cores. The XCMP method requires accurate time delay determination of pavement reflection. However, for thin asphalt overlay, the range resolution of 3-D GPR signal is insufficient to resolve the overlapped pulses of asphalt concrete (AC). The objective of this paper is to use multiple signal classification (MUSIC) algorithm to increase the resolution of 3-D GPR signals, such that thin asphalt overlay thickness can be accurately estimated. An evaluation of the MUSIC algorithm at a full-scale test section and a comparison with regularized deconvolution algorithm showed the MUSIC algorithm is an effective approach for increasing the 3-D GPR signal range resolution when the XCMP method is applied on thin AC overlay.

[1]  Thomas Kailath,et al.  On spatial smoothing for direction-of-arrival estimation of coherent signals , 1985, IEEE Trans. Acoust. Speech Signal Process..

[2]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[3]  Jian Li,et al.  Continuous pavement profiling with ground-penetrating radar , 2002 .

[4]  Imad L. Al-Qadi,et al.  An innovative method for measuring pavement dielectric constant using the extended CMP method with two air-coupled GPR systems , 2014 .

[5]  Surendra Prasad,et al.  An improved spatial smoothing technique for bearing estimation in a multipath environment , 1988, IEEE Trans. Acoust. Speech Signal Process..

[6]  Imad L. Al-Qadi,et al.  Innovative Sprinkle Treatment for Thin Durable Asphalt Overlays , 2013 .

[7]  Imad L. Al-Qadi,et al.  Algorithm development for the application of ground-penetrating radar on asphalt pavement compaction monitoring , 2016 .

[8]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[9]  Shan Zhao,et al.  Development of regularization methods on simulated ground-penetrating radar signals to predict thin asphalt overlay thickness , 2017, Signal Process..

[10]  Imad L. Al-Qadi,et al.  Development of an analytic approach utilizing the extended common midpoint method to estimate asphalt pavement thickness with 3-D ground-penetrating radar , 2016 .

[11]  Imad L. Al-Qadi,et al.  Successful Application of Ground-Penetrating Radar for Quality Assurance-Quality Control of New Pavements , 2003 .

[12]  Imad L. Al-Qadi,et al.  Approach to Determining In Situ Dielectric Constant of Pavements: Development and Implementation at Interstate 81 in Virginia , 2002 .

[13]  L. C. Wood,et al.  The limits of resolution of zero-phase wavelets , 1982 .

[14]  Yide Wang,et al.  Thin-Pavement Thickness Estimation Using GPR With High-Resolution and Superresolution Methods , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Francesco Soldovieri,et al.  Localization of Interfaces Embedded in a Half-Space by a Linear Inverse Scattering Algorithm , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Francesco Soldovieri,et al.  Localization of the Interfaces of a Slab Hidden Behind a Wall , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Imad L. Al-Qadi,et al.  Automatic detection of multiple pavement layers from GPR data , 2008 .

[18]  Umberto Spagnolini,et al.  Permittivity measurements of multilayered media with monostatic pulse radar , 1997, IEEE Trans. Geosci. Remote. Sens..

[19]  Imad L. Al-Qadi,et al.  In situ measurements of hot-mix asphalt dielectric properties , 2001 .

[20]  Peiliang Xu Truncated SVD methods for discrete linear ill-posed problems , 1998 .

[21]  Imad L. Al-Qadi,et al.  Pavement drainage pipe condition assessment by GPR image reconstruction using FDTD modeling , 2017 .

[22]  Jian Li,et al.  Super resolution time delay estimation via MODE-WRELAX , 1999 .

[23]  W. Carrara,et al.  Spotlight synthetic aperture radar : signal processing algorithms , 1995 .

[24]  Hanoch Lev-Ari,et al.  Intensity-only signal-subspace-based imaging. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Thomas Kailath,et al.  Determining the number of signals by information theoretic criteria , 1983, ICASSP.

[26]  Richard G. Lyons,et al.  Understanding Digital Signal Processing , 1996 .

[27]  H. Akaike A new look at the statistical model identification , 1974 .

[28]  F. Culick A Note on Rayleigh's Criterion , 1987 .

[29]  Yang H. Huang,et al.  Pavement Analysis and Design , 1997 .

[30]  Imad L. Al-Qadi,et al.  MEASURING LAYER THICKNESSES WITH GPR - THEORY TO PRACTICE , 2005 .

[31]  David E. Newcomb,et al.  Thin Asphalt Overlays for Pavement Preservation , 2009 .

[32]  Imad L. Al-Qadi,et al.  Application of regularized deconvolution technique for predicting pavement thin layer thicknesses from ground penetrating radar data , 2015 .

[33]  Alfred M. Bruckstein,et al.  The resolution of overlapping echos , 1985, IEEE Trans. Acoust. Speech Signal Process..

[34]  Gene H. Golub,et al.  Tikhonov Regularization and Total Least Squares , 1999, SIAM J. Matrix Anal. Appl..

[35]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[36]  Yasutaka Ogawa,et al.  Superresolution techniques for time-domain measurements with a network analyzer , 1991 .

[37]  Imad L. Al-Qadi,et al.  In-Place Hot-Mix Asphalt Density Estimation Using Ground-Penetrating Radar , 2010 .

[38]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[39]  S. M. Doherty,et al.  Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data , 2000 .